Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 109(20): 7859-64, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22550175

ABSTRACT

The Sonic Hedgehog (Shh) pathway drives a subset of medulloblastomas, a malignant neuroectodermal brain cancer, and other cancers. Small-molecule Shh pathway inhibitors have induced tumor regression in mice and patients with medulloblastoma; however, drug resistance rapidly emerges, in some cases via de novo mutation of the drug target. Here we assess the response and resistance mechanisms to the natural product derivative saridegib in an aggressive Shh-driven mouse medulloblastoma model. In this model, saridegib treatment induced tumor reduction and significantly prolonged survival. Furthermore, the effect of saridegib on tumor-initiating capacity was demonstrated by reduced tumor incidence, slower growth, and spontaneous tumor regression that occurred in allografts generated from previously treated autochthonous medulloblastomas compared with those from untreated donors. Saridegib, a known P-glycoprotein (Pgp) substrate, induced Pgp activity in treated tumors, which likely contributed to emergence of drug resistance. Unlike other Smoothened (Smo) inhibitors, the drug resistance was neither mutation-dependent nor Gli2 amplification-dependent, and saridegib was found to be active in cells with the D473H point mutation that rendered them resistant to another Smo inhibitor, GDC-0449. The fivefold increase in lifespan in mice treated with saridegib as a single agent compares favorably with both targeted and cytotoxic therapies. The absence of genetic mutations that confer resistance distinguishes saridegib from other Smo inhibitors.


Subject(s)
Medulloblastoma/drug therapy , Receptors, G-Protein-Coupled/antagonists & inhibitors , Signal Transduction/drug effects , Veratrum Alkaloids/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Base Sequence , Blotting, Western , Comparative Genomic Hybridization , DNA Primers/genetics , Drug Resistance, Neoplasm , Flow Cytometry , Gene Expression Profiling , Immunohistochemistry , Kruppel-Like Transcription Factors/genetics , Magnetic Resonance Imaging , Medulloblastoma/pathology , Mice , Molecular Sequence Data , Pilot Projects , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Smoothened Receptor , Survival Analysis , Veratrum Alkaloids/therapeutic use , Zinc Finger Protein Gli2
2.
Mol Cancer ; 6: 7, 2007 Jan 18.
Article in English | MEDLINE | ID: mdl-17233903

ABSTRACT

BACKGROUND: Human mammary epithelial cells (HMEC) overcome two well-characterized genetic and epigenetic barriers as they progress from primary cells to fully immortalized cell lines in vitro. Finite lifespan HMEC overcome an Rb-mediated stress-associated senescence barrier (stasis), and a stringent, telomere-length dependent, barrier (agonescence or crisis, depending on p53 status). HMEC that have overcome the second senescence barrier are immortalized. METHODS: We have characterized pre-stasis, post-selection (post-stasis, with p16 silenced), and fully immortalized HMEC by transcription profiling and RT-PCR. Four pre-stasis and seven post-selection HMEC samples, along with 10 representatives of fully immortalized breast epithelial cell lines, were profiled using Affymetrix U133A/B chips and compared using both supervised and unsupervised clustering. Datasets were validated by RT-PCR for a select set of genes. Quantitative immunofluorescence was used to assess changes in transcriptional regulators associated with the gene expression changes. RESULTS: The most dramatic and uniform changes we observed were in a set of about 30 genes that are characterized as a "cancer proliferation cluster," which includes genes expressed during mitosis (CDC2, CDC25, MCM2, PLK1) and following DNA damage. The increased expression of these genes was particularly concordant in the fully immortalized lines. Additional changes were observed in IFN-regulated genes in some post-selection and fully immortalized cultures. Nuclear localization was observed for several transcriptional regulators associated with expression of these genes in post-selection and immortalized HMEC, including Rb, Myc, BRCA1, HDAC3 and SP1. CONCLUSION: Gene expression profiles and cytological changes in related transcriptional regulators indicate that immortalized HMEC resemble non-invasive breast cancers, such as ductal and lobular carcinomas in situ, and are strikingly distinct from finite-lifespan HMEC, particularly with regard to genes involved in proliferation, cell cycle regulation, chromosome structure and the DNA damage response. The comparison of HMEC profiles with lines harboring oncogenic changes (e.g. overexpression of Her-2neu, loss of p53 expression) identifies genes involved in tissue remodeling as well as proinflamatory cytokines and S100 proteins. Studies on carcinogenesis using immortalized cell lines as starting points or "normal" controls need to account for the significant pre-existing genetic and epigenetic changes inherent in such lines before results can be broadly interpreted.


Subject(s)
Breast Neoplasms/genetics , Epithelial Cells/metabolism , Gene Expression Regulation, Neoplastic , Mammary Glands, Human/metabolism , Transcription, Genetic , Cell Nucleus/metabolism , Cluster Analysis , Epithelial Cells/physiology , Gene Expression Profiling , Humans , Mammary Glands, Human/cytology , Polymerase Chain Reaction/methods , Promoter Regions, Genetic , Receptor, ErbB-2/metabolism , Regulatory Elements, Transcriptional , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...