Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Leukemia ; 38(5): 963-968, 2024 May.
Article in English | MEDLINE | ID: mdl-38491306

ABSTRACT

Chimeric antigen receptor (CAR) T cells targeting CD22 (CD22-CAR) provide a therapeutic option for patients with CD22+ malignancies with progression after CD19-directed therapies. Using on-site, automated, closed-loop manufacturing, we conducted parallel Phase 1b clinical trials investigating a humanized CD22-CAR with 41BB costimulatory domain in children and adults with heavily treated, relapsed/refractory (r/r) B-ALL. Of 19 patients enrolled, 18 had successful CD22-CAR manufacturing, and 16 patients were infused. High grade (3-4) cytokine release syndrome (CRS) and immune effector-cell-associated neurotoxicity syndrome (ICANS) each occurred in only one patient; however, three patients experienced immune-effector-cell-associated hemophagocytic lymphohistiocytosis-like syndrome (IEC-HS). Twelve of 16 patients (75%) achieved CR with an overall 56% MRD-negative CR rate. Duration of response was overall limited (median 77 days), and CD22 expression was downregulated in 4/12 (33%) available samples at relapse. In summary, we demonstrate that closed-loop manufacturing of CD22-CAR T cells is feasible and is associated with a favorable safety profile and high CR rates in pediatric and adult r/r B-ALL, a cohort with limited CD22-CAR reporting.


Subject(s)
Immunotherapy, Adoptive , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Sialic Acid Binding Ig-like Lectin 2 , Humans , Sialic Acid Binding Ig-like Lectin 2/immunology , Child , Adult , Female , Male , Adolescent , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Young Adult , Receptors, Chimeric Antigen/immunology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Child, Preschool , Middle Aged , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
2.
Mol Cancer ; 22(1): 100, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365642

ABSTRACT

BACKGROUND: Chimeric Antigen Receptor (CAR) T cells are now standard of care (SOC) for some patients with B cell and plasma cell malignancies and could disrupt the therapeutic landscape of solid tumors. However, access to CAR-T cells is not adequate to meet clinical needs, in part due to high cost and long lead times for manufacturing clinical grade virus. Non-viral site directed CAR integration can be accomplished using CRISPR/Cas9 and double-stranded DNA (dsDNA) or single-stranded DNA (ssDNA) via homology-directed repair (HDR), however yields with this approach have been limiting for clinical application (dsDNA) or access to large yields sufficient to meet the manufacturing demands outside early phase clinical trials is limited (ssDNA). METHODS: We applied homology-independent targeted insertion (HITI) or HDR using CRISPR/Cas9 and nanoplasmid DNA to insert an anti-GD2 CAR into the T cell receptor alpha constant (TRAC) locus and compared both targeted insertion strategies in our system. Next, we optimized post-HITI CRISPR EnrichMENT (CEMENT) to seamlessly integrate it into a 14-day process and compared our knock-in with viral transduced anti-GD2 CAR-T cells. Finally, we explored the off-target genomic toxicity of our genomic engineering approach. RESULTS: Here, we show that site directed CAR integration utilizing nanoplasmid DNA delivered via HITI provides high cell yields and highly functional cells. CEMENT enriched CAR T cells to approximately 80% purity, resulting in therapeutically relevant dose ranges of 5.5 × 108-3.6 × 109 CAR + T cells. CRISPR knock-in CAR-T cells were functionally comparable with viral transduced anti-GD2 CAR-T cells and did not show any evidence of off-target genomic toxicity. CONCLUSIONS: Our work provides a novel platform to perform guided CAR insertion into primary human T-cells using nanoplasmid DNA and holds the potential to increase access to CAR-T cell therapies.


Subject(s)
DNA , T-Lymphocytes , Humans , Recombinational DNA Repair , Immunotherapy, Adoptive
3.
Nature ; 615(7953): 697-704, 2023 03.
Article in English | MEDLINE | ID: mdl-36890230

ABSTRACT

Neoantigens are peptides derived from non-synonymous mutations presented by human leukocyte antigens (HLAs), which are recognized by antitumour T cells1-14. The large HLA allele diversity and limiting clinical samples have restricted the study of the landscape of neoantigen-targeted T cell responses in patients over their treatment course. Here we applied recently developed technologies15-17 to capture neoantigen-specific T cells from blood and tumours from patients with metastatic melanoma with or without response to anti-programmed death receptor 1 (PD-1) immunotherapy. We generated personalized libraries of neoantigen-HLA capture reagents to single-cell isolate the T cells and clone their T cell receptors (neoTCRs). Multiple T cells with different neoTCR sequences (T cell clonotypes) recognized a limited number of mutations in samples from seven patients with long-lasting clinical responses. These neoTCR clonotypes were recurrently detected over time in the blood and tumour. Samples from four patients with no response to anti-PD-1 also demonstrated neoantigen-specific T cell responses in the blood and tumour to a restricted number of mutations with lower TCR polyclonality and were not recurrently detected in sequential samples. Reconstitution of the neoTCRs in donor T cells using non-viral CRISPR-Cas9 gene editing demonstrated specific recognition and cytotoxicity to patient-matched melanoma cell lines. Thus, effective anti-PD-1 immunotherapy is associated with the presence of polyclonal CD8+ T cells in the tumour and blood specific for a limited number of immunodominant mutations, which are recurrently recognized over time.


Subject(s)
Antigens, Neoplasm , CD8-Positive T-Lymphocytes , Immune Checkpoint Inhibitors , Immunotherapy , Melanoma , Humans , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Melanoma/drug therapy , Melanoma/genetics , Melanoma/immunology , Melanoma/pathology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , HLA Antigens/immunology , Neoplasm Metastasis , Precision Medicine , Gene Editing , CRISPR-Cas Systems , Mutation
4.
Nanoscale ; 12(11): 6545-6555, 2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32159198

ABSTRACT

Bilayer vesicles that mimic a real biological cell can be tailored to carry out a specific function by manipulating the molecular composition of the amphiphiles. These bio-inspired and bio-mimetic structures are increasingly being employed for a number of applications from drug delivery to water purification and beyond. Complex hybrid bilayers are the key building blocks for fully synthetic vesicles that can mimic biological cell membranes, which often contain a wide variety of molecular species. While the assembly and morpholgy of pure phospholid bilayer vesicles is well understood, the functionality and structure dramaticlly changes when copolymer and/or carbon nanotube porins (CNTP) are added. The aim of this study is to understand how the collective molecular interactions within hybrid vesicles affect their nanoscale structure and properties. In situ small and wide angle X-ray scattering (SAXS/WAXS) and molecular dynamics simulations (MD) are used to investigate the morphological effect of molecular interactions between polybutadiene polyethylene oxide, lipids and carbon nanotubes (CNT) within the hybrid vesicle bilayer. Within the lipid/copolymer system, the hybrid bilayer morphology transitions from phase separated lipid and compressed copolymer at low copolymer loadings to a mixed bilayer where opposing lipids are mostly separated from the inner region. This transition begins between 60 wt% and 70 wt%, with full homogenization observed by 80 wt% copolymer. The incorporation of CNT into the hybrid vesicles increases the bilayer thickness and enhances the bilayer symmetry. Analysis of the WAXS and MD indicate that the CNT-dioleoyl interactions are much stronger than the CNT-polybutadiene.


Subject(s)
Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Nanotubes, Carbon/chemistry , Porins/chemistry , X-Ray Diffraction
5.
PLoS One ; 14(2): e0212197, 2019.
Article in English | MEDLINE | ID: mdl-30794578

ABSTRACT

Hybrid biotic abiotic devices can be used to interface electronics with biological systems for novel therapies or to increase device functionality beyond silicon. Many strategies exist to merge the electronic and biological worlds, one dominated by electrons and holes as charge carriers, the other by ions. In the biological world, lipid bilayers and ion channels are essential to compartmentalize the cell machinery and regulate ionic fluxes across the cell membrane. Here, we demonstrate a bioelectronic device in which a lipid bilayer supported on H+-conducting Pd/PdHx contacts contains carbon nanotubes porin (CNTP) channels. This bioelectronic device uses CNTPs to control of H+ flow across the lipid bilayer with a voltage applied to the Pd/PdHx contacts. Potential applications of these devices include local pH sensing and control.


Subject(s)
Electrons , Lipid Bilayers/chemistry , Nanotubes/chemistry , Porins/chemistry , Protons , Electronics
6.
Nano Lett ; 19(2): 629-634, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30285454

ABSTRACT

Limited biocompatibility and fouling propensity can restrict real-world applications of a large variety of biosensors. Biological systems are adept at protecting and separating vital components of biological machinery with semipermeable membranes that often contain defined pores and gates to restrict transmembrane transport only to specific species. Here we use a similar approach for creating fouling-resistant pH sensors. We integrate silicon nanoribbon transistor sensors with an antifouling lipid bilayer coating that contains proton-permeable carbon nanotube porin (CNTP) channels and demonstrate robust pH detection in a variety of complex biological fluids.

7.
Adv Mater ; 30(51): e1803355, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30368926

ABSTRACT

Biological membranes provide a fascinating example of a separation system that is multifunctional, tunable, precise, and efficient. Biomimetic membranes, which mimic the architecture of cellular membranes, have the potential to deliver significant improvements in specificity and permeability. Here, a fully synthetic biomimetic membrane is reported that incorporates ultra-efficient 1.5 nm diameter carbon nanotube porin (CNTPs) channels in a block-copolymer matrix. It is demonstrated that CNTPs maintain high proton and water permeability in these membranes. CNTPs can also mimic the behavior of biological gap junctions by forming bridges between vesicular compartments that allow transport of small molecules.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , Nanotubes, Carbon/chemistry , Polymers/chemistry , Porins/chemistry
8.
Faraday Discuss ; 209(0): 359-369, 2018 09 28.
Article in English | MEDLINE | ID: mdl-29987303

ABSTRACT

Carbon nanotubes represent one of the most interesting examples of a nanofluidic channel that combines extremely small diameters with atomically smooth walls and well-defined chemical functionalities at the pore entrance. In the past, sub-1 nm diameter carbon nanotube porins (CNTPs) embedded in a lipid membrane matrix demonstrated extremely high water permeabilities and strong ion selectivities. In this work, we explore additional factors that can influence transport in these channels. Specifically, we use stopped-flow transport measurements to focus on the effect of chemical modifications of the CNT rims and chaotropic polyethyleneglycol (PEG) additives on CNTP water permeability and Arrhenius activation energy barriers for water transport. We show that PEG, especially in its more chaotropic coiled configuration, enhances the water transport and reduces the associated activation energy. Removal of the static charges on the CNTP rim by converting -COOH groups to neutral methylamide groups also reduces the activation energy barriers and enhances water transport rates.

9.
Science ; 359(6383)2018 03 30.
Article in English | MEDLINE | ID: mdl-29599214

ABSTRACT

Horner and Pohl argue that high water transport rates reported for carbon nanotube porins (CNTPs) originate from leakage at the nanotube-bilayer interface. Our results and new experimental evidence are consistent with transport through the nanotube pores and rule out a defect-mediated transport mechanism. Mechanistic origins of the high Arrhenius factor that we reported for narrow CNTPs at pH 8 require further investigation.


Subject(s)
Nanotubes, Carbon , Porins , Biological Transport , Permeability , Water
10.
Science ; 357(6353): 792-796, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28839070

ABSTRACT

Fast water transport through carbon nanotube pores has raised the possibility to use them in the next generation of water treatment technologies. We report that water permeability in 0.8-nanometer-diameter carbon nanotube porins (CNTPs), which confine water down to a single-file chain, exceeds that of biological water transporters and of wider CNT pores by an order of magnitude. Intermolecular hydrogen-bond rearrangement, required for entry into the nanotube, dominates the energy barrier and can be manipulated to enhance water transport rates. CNTPs block anion transport, even at salinities that exceed seawater levels, and their ion selectivity can be tuned to configure them into switchable ionic diodes. These properties make CNTPs a promising material for developing membrane separation technologies.


Subject(s)
Nanotubes, Carbon/chemistry , Porins/chemistry , Water Purification , Water , Hydrogen Bonding , Permeability
11.
Philos Trans R Soc Lond B Biol Sci ; 372(1726)2017 Aug 05.
Article in English | MEDLINE | ID: mdl-28630162

ABSTRACT

In-plane mobility of proteins in lipid membranes is one of the fundamental mechanisms supporting biological functionality. Here we use high-speed atomic force microscopy (HS-AFM) to show that a novel type of biomimetic channel-carbon nanotube porins (CNTPs)-is also laterally mobile in supported lipid membranes, mimicking biological protein behaviour. HS-AFM can capture real-time dynamics of CNTP motion in the supported lipid bilayer membrane, build long-term trajectories of the CNTP motion and determine the diffusion coefficients associated with this motion. Our analysis shows that diffusion coefficients of CNTPs fall into the same range as those of proteins in supported lipid membranes. CNTPs in HS-AFM experiments often exhibit 'directed' diffusion behaviour, which is common for proteins in live cell membranes.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.


Subject(s)
Cell Membrane/physiology , Lipid Bilayers/chemistry , Nanotubes, Carbon/chemistry , Porins/chemistry , Microscopy, Atomic Force
12.
Nat Protoc ; 11(10): 2029-2047, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27658016

ABSTRACT

Carbon nanotube porins (CNTPs) are 10- to 20-nm-long segments of lipid-stabilized single-walled carbon nanotubes (CNTs) that can be inserted into phospholipid membranes to form nanometer-scale-diameter pores that approximate the geometry and many key transport characteristics of biological membrane channels. We describe protocols for CNTP synthesis by ultrasound-assisted cutting of long CNTs in the presence of lipid amphiphiles, and for validation of CNTP incorporation into a lipid membrane using a proton permeability assay. In addition, we describe protocols for measuring conductance of individual CNTPs in planar lipid bilayers and plasma membranes of live cells. The protocol for the preparation and testing of the CNTPs in vesicle systems takes 3 d, and single CNTP conductance measurements take 2-5 h. The CNTPs produced by this cutting protocol remain stable and active for at least 10-12 weeks.

13.
Nano Lett ; 16(7): 4019-24, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27322135

ABSTRACT

Carbon nanotube porins (CNTPs), small segments of carbon nanotubes capable of forming defined pores in lipid membranes, are important future components for bionanoelectronic devices as they could provide a robust analog of biological membrane channels. In order to control the incorporation of these CNT channels into lipid bilayers, it is important to understand the structure of the CNTPs before and after insertion into the lipid bilayer as well as the impact of such insertion on the bilayer structure. Here we employed a noninvasive in situ probe, small-angle X-ray scattering, to study the integration of CNT porins into dioleoylphosphatidylcholine bilayers. Our results show that CNTPs in solution are stabilized by a monolayer of lipid molecules wrapped around their outer surface. We also demonstrate that insertion of CNTPs into the lipid bilayer results in decreased bilayer thickness with the magnitude of this effect increasing with the concentration of CNTPs.


Subject(s)
Nanopores , Nanotubes, Carbon , Lipid Bilayers , Scattering, Small Angle , X-Ray Diffraction
14.
Nat Nanotechnol ; 11(7): 639-44, 2016 07.
Article in English | MEDLINE | ID: mdl-27043198

ABSTRACT

Proton transport plays an important role in many biological processes due to the ability of protons to rapidly translocate along chains of hydrogen-bonded water molecules. Molecular dynamics simulations have predicted that confinement in hydrophobic nanochannels should enhance the rate of proton transport. Here, we show that 0.8-nm-diameter carbon nanotube porins, which promote the formation of one-dimensional water wires, can support proton transport rates exceeding those of bulk water by an order of magnitude. The transport rates in these narrow nanotube pores also exceed those of biological channels and Nafion. With larger 1.5-nm-diameter nanotube porins, proton transport rates comparable to bulk water are observed. We also show that the proton conductance of these channels can be modulated by the presence of Ca(2+) ions. Our results illustrate the potential of small-diameter carbon nanotube porins as a proton conductor material and suggest that strong spatial confinement is a key factor in enabling efficient proton transport.

15.
Nanoscale ; 7(21): 9477-86, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25874680

ABSTRACT

Phospholipid bilayer coated Si nanowires are one-dimensional (1D) composites that provide versatile bio-nanoelectronic functionality via incorporation of a wide variety of biomolecules into the phospholipid matrix. The physiochemical behaviour of the phospholipid bilayer is strongly dependent on its structure and, as a consequence, substantial modelling and experimental efforts have been directed at the structural characterization of supported bilayers and unsupported phospholipid vesicles; nonetheless, the experimental studies conducted to date have exclusively involved volume-averaged techniques, which do not allow for the assignment of spatially resolved structural variations that could critically impact the performance of the 1D phospholipid-Si NW composites. In this manuscript, we use scanning transmission X-ray microscopy (STXM) to probe bond orientation and bilayer thickness as a function of position with a spatial resolution of ∼30 nm for Δ9-cis 1,2-dioleoyl-sn-glycero-3-phosphocholine layers prepared Si NWs. When coupled with small angle X-ray scattering measurements, the STXM data reveal structural motifs of the Si NWs that give rise to multi-bilayer formation and enable assignment of the orientation of specific bonds known to affect the order and rigidity of phospholipid bilayers.

16.
Adv Mater ; 27(5): 831-6, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25410490

ABSTRACT

Light-activated bioelectronic silicon nanowire transistor devices are made by fusing proteoliposomes containing a bacteriorhodopsin (bR) proton pump onto the nanowire surface. Under green-light illumination, bR pumps protons toward the nanowire, and the pH gradient developed by the pump changes the transistor output. Furthermore, co-assembly of small biomolecules that alter the bilayer permeability to other ions can upregulate and downregulate the response of field-effect transistor devices.


Subject(s)
Light , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membrane Proteins/metabolism , Transistors, Electronic , Kinetics , Models, Molecular , Molecular Conformation , Nanowires/chemistry , Protons , Silicon/chemistry
17.
Nano Lett ; 14(12): 7051-6, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25372973

ABSTRACT

We report the measurements of transport of ions and uncharged species through carbon nanotube (CNT) porins--short segments of CNTs inserted into a lipid bilayer membrane. Rejection characteristics of the CNT porins are governed by size exclusion for the uncharged species. In contrast, rejection of ionic species is governed by the electrostatic repulsion and Donnan membrane equilibrium. Permeability of monovalent cations follows the general trend in the hydrated ion size, except in the case of Cs(+) ions.

18.
Nature ; 514(7524): 612-5, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25355362

ABSTRACT

There is much interest in developing synthetic analogues of biological membrane channels with high efficiency and exquisite selectivity for transporting ions and molecules. Bottom-up and top-down methods can produce nanopores of a size comparable to that of endogenous protein channels, but replicating their affinity and transport properties remains challenging. In principle, carbon nanotubes (CNTs) should be an ideal membrane channel platform: they exhibit excellent transport properties and their narrow hydrophobic inner pores mimic structural motifs typical of biological channels. Moreover, simulations predict that CNTs with a length comparable to the thickness of a lipid bilayer membrane can self-insert into the membrane. Functionalized CNTs have indeed been found to penetrate lipid membranes and cell walls, and short tubes have been forced into membranes to create sensors, yet membrane transport applications of short CNTs remain underexplored. Here we show that short CNTs spontaneously insert into lipid bilayers and live cell membranes to form channels that exhibit a unitary conductance of 70-100 picosiemens under physiological conditions. Despite their structural simplicity, these 'CNT porins' transport water, protons, small ions and DNA, stochastically switch between metastable conductance substates, and display characteristic macromolecule-induced ionic current blockades. We also show that local channel and membrane charges can control the conductance and ion selectivity of the CNT porins, thereby establishing these nanopores as a promising biomimetic platform for developing cell interfaces, studying transport in biological channels, and creating stochastic sensors.


Subject(s)
Cell Membrane/chemistry , Cell Membrane/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Nanotubes, Carbon , Porins/metabolism , Stochastic Processes , Animals , Biological Transport , CHO Cells , Cell Survival , Cricetulus , DNA/metabolism , HEK293 Cells , Humans , Ion Channels/metabolism , Liposomes , Nanotubes, Carbon/ultrastructure , Porins/chemistry
19.
Biophys J ; 105(6): 1388-96, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-24047990

ABSTRACT

Artificial membrane systems allow researchers to study the structure and function of membrane proteins in a matrix that approximates their natural environment and to integrate these proteins in ex vivo devices such as electronic biosensors, thin-film protein arrays, or biofuel cells. Given that most membrane proteins have vectorial functions, both functional studies and applications require effective control over protein orientation within a lipid bilayer. In this work, we explored the role of the bilayer surface charge in determining transmembrane protein orientation and functionality during formation of proteoliposomes. We reconstituted a model vectorial ion pump, proteorhodopsin, in liposomes of opposite charges and varying charge densities and determined the resultant protein orientation. Antibody-binding assay and proteolysis of proteoliposomes showed physical evidence of preferential orientation, and functional assays verified the vectorial nature of ion transport in this system. Our results indicate that the manipulation of lipid composition can indeed control orientation of an asymmetrically charged membrane protein, proteorhodopsin, in liposomes.


Subject(s)
Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membranes, Artificial , Rhodopsin/metabolism , Biological Transport , Light , Proteolipids/metabolism , Proteolysis , Proton Pumps/metabolism , Protons , Rhodopsin/chemistry , Rhodopsins, Microbial , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...