Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Microbiol ; 289: 109957, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160508

ABSTRACT

It is a common sense that porcine reproductive and respiratory syndrome virus (PRRSV) infection could cause immune failure of classical swine fever (CSF) vaccine, and porcine alveolar macrophages (PAMs) are the target cells of both. To elucidate the role of macrophage polarization in PRRSV infection induced CSF vaccine failure, an immortal porcine alveolar macrophage line PAM39 cell line was used to investigate the effect of PRRSV or/and CSFV C-strain (CSFV-C) infection on macrophage polarization in vitro. Interestingly, PRRSV single infection or PRRSV co-infection with CSFV-C promoted PAM39 cells to M1, while CSFV-C single infection induced PAM39 cells to M2. After the construction of M1 and M2 PAM39 cells polarization models, M1 polarized PAM39 cells were found to inhibit the replication of CSFV-C, and Chinese medicine such as matrine, ginsenosides and astragalus polysaccharides could alleviate the polarization of PAM39 cells and the replication of CSFV-C. Furthermore, interferon (IFN)-γ and lipopolysaccharide (LPS) co-stimulation induced NF-κB activation while matrine treatment blocked M1 polarization-induced NF-κB pathway activation. These findings provided a theoretical basis for designing a new strategy to improve the immune effect of CSFV-C based on porcine alveolar macrophage polarization subtypes.


Subject(s)
Classical Swine Fever , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Vaccines , Swine , Animals , NF-kappa B/metabolism , Matrines , Classical Swine Fever/prevention & control , Macrophages, Alveolar , Virus Replication , Porcine Reproductive and Respiratory Syndrome/metabolism , Swine Diseases/metabolism
2.
Vet Microbiol ; 284: 109825, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37453262

ABSTRACT

PRRSV and CSFV are both common infectious pathogens in porcine populations, posing significant threats to the healthy development of the porcine industry. Vaccine immunization is the main way to prevent and control these two diseases. Increasing studies have demonstrated that there is an interaction between PRRSV co-infection and CSFV vaccine immune failure. To investigate the effect of PRRSV infection on CSFV proliferation and its molecular mechanism, the proliferation dynamics of PRRSV/CSFV, the NLRP3 inflammasome components, and IL-1ß expression levels were detected in PRRSV/CSFV alone- or co-infection. Subsequently, the relationship between inflammasome activation, IL-1ß expression, and CSFV proliferation was analyzed through the construction of an inflammasome activation model, specific siRNA interference, and specific inhibitor treatment. The results showed that CSFV infection had a poor regulatory effect on NLRP3 inflammasome activation and IL-1ß maturation, but PRRSV and CSFV co-infection could significantly up-regulate the expression of NLRP3 and ASC, induce Caspase-1 activation, and promote IL-1ß maturation. It was further determined that NLRP3 inflammasome components played important roles in IL-1ß maturation and inhibiting CSFV proliferation by PRRSV. Additional experiments indicated that PRRSV replication is essential for NLRP3 inflammasome activation, IL-1ß maturation, and CSFV proliferation inhibition. More importantly, NLRP3 inflammasome activation is regulated by the TLR4-MyD88-NF-κB pathways. In conclusion, PRRSV infection induced IL-1ß maturation by activating the NLRP3 inflammasome through the TLR4-MyD88-NF-κB pathways and then inhibited the proliferation of CSFV. These data further improved the theoretical basis for PRRSV inducing inflammatory factors and leading to the failure of CSFV immunization.


Subject(s)
Coinfection , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Vaccines , Swine , Animals , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , NF-kappa B/metabolism , Signal Transduction , Myeloid Differentiation Factor 88/genetics , Toll-Like Receptor 4 , Coinfection/veterinary , Cell Proliferation , Interleukin-1beta/genetics
3.
Virus Res ; 319: 198854, 2022 Oct 02.
Article in English | MEDLINE | ID: mdl-35788015

ABSTRACT

It is a common phenomenon that PRRSV infection can interfere with the protective efficacy of the CSFV vaccine in clinical settings, and no effective treatment is available. In our previous study, we found that PRRSV infection could inhibit the replication of CSFV-C by promoting the high expression of inflammatory cytokines. In order to further investigate whether Chinese medicine could alleviate the inhibition effect, the PAM39 cells model, which was co-infected with PRRSV and CSFV-C, was established. The effects of Chinese medicine on this co-infection model, as well as the effect of astragalus polysaccharide on the TLRs/NF-κB/TNF-α pathways, were investigated. Our results demonstrated that PAM39 cells inoculated with different pathogenic PRRSV significantly inhibited the replication of CSFV-C and up-regulated the major inflammatory mediators, including TNF-α. For the following studies, 50 µM of astragalus polysaccharide was selected from six kinds of representative Chinese medicine based on their cytotoxicity, viral titers, and inflammatory mediators. Further experiments indicated that astragalus polysaccharide could alleviate the inhibition of CSFV-C replication in the co-infection group with no influence on cell viability. In addition, astragalus polysaccharide treatment clearly reduced P65 phosphorylation and down-regulated the expression of TLR7, TLR9, and TNF-α in co-infection group, implying that the TLRs/NF-κB/TNF-α pathways may play an important role in astragalus polysaccharide's anti-inflammatory response. In conclusion, astragalus polysaccharide treatment alleviated PRRSV-mediated inhibition of CSFV-C replication via the TLRs/NF-κB/TNF-α pathways, and the molecular mechanism of PRRSV co-infection leading to the failure of CSFV vaccine immunization was partially elucidated, providing a scientific basis for effective CSF prevention and control in pig farms.


Subject(s)
Classical Swine Fever Virus , Coinfection , Porcine respiratory and reproductive syndrome virus , Animals , Inflammation Mediators , NF-kappa B/metabolism , Polysaccharides/pharmacology , Porcine respiratory and reproductive syndrome virus/metabolism , Swine , Tumor Necrosis Factor-alpha/genetics
4.
PLoS One ; 14(1): e0210696, 2019.
Article in English | MEDLINE | ID: mdl-30657774

ABSTRACT

Chicken anaemia virus (CAV), a member of the genus Gyrovirus, is the etiological agent of chicken infectious anaemia. CAV infects bone marrow-derived cells, resulting in severe anaemia and immunosuppression in young chickens and a compromised immune response in older birds. We investigated the molecular epidemiology of CAV in sick chickens in China from 2014 to 2015 and showed that the CAV-positive rate was 13.30%, in which mixed infection (55.56%) was the main type of infection. We isolated and identified 15 new CAV strains using different methods including indirect immunofluorescence assay and Western Blotting. We used overlapping polymerase chain reaction to map the whole genome of the strains. Phylogenetic analyses of the obtained sequences and related sequences available in GenBank generated four distinct groups (A-D). We built phylogenetic trees using predicted viral protein (VP) sequences. Unlike CAV VP2s and VP3s that were well conserved, the diversity of VP1s indicated that the new strains were virulent. Our epidemiological study provided new insights into the prevalence of CAV in clinical settings in recent years in China.


Subject(s)
Chicken anemia virus/pathogenicity , Poultry Diseases/epidemiology , Poultry Diseases/virology , Animals , Chicken anemia virus/genetics , Chickens , China/epidemiology , Circoviridae Infections/epidemiology , Circoviridae Infections/virology , Molecular Epidemiology , Polymerase Chain Reaction , Viral Proteins/genetics
5.
Sci Rep ; 7: 41068, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28198372

ABSTRACT

Avian gyrovirus 2 (AGV2) was the second member of the viral genus Cyclovirus to be discovered. This virus poses a significant potential threat to humans and poultry due to its global dissemination and infectiousness. We used three overlapping polymerase chain reactions (PCRs) to map the whole genome of AGV2. We then modelled the evolutionary history of these novel sequence data in the context of related sequences from GenBank. We analysed the viral protein characteristics of the different phylogenetic groups and explored differences in evolutionary trends between Chinese strains and strains from other countries. We obtained 17 avian-sourced AGV2 whole genomes from different regions of China from 2015 to 2016. Phylogenetic analyses of these Chinese AGV2 sequences and related sequences produced four distinct groups (A-D) with significant bootstrap values. We also built phylogenies using predicted viral protein sequences. We found a potential hypervariable region in VP1 at sites 288-314, and we identified the amino acid changes responsible for the distinct VP2 and VP3 groups. Three new motifs in the AGV2 5'-UTR direct repeat (DR) region were discovered and grouped. The novel characteristics and diverse research on the AGV2 genome provide a valuable framework for additional research.


Subject(s)
Genome, Viral , Gyrovirus/genetics , 5' Untranslated Regions/genetics , Amino Acid Sequence , Animals , Biological Evolution , Capsid Proteins/chemistry , Capsid Proteins/classification , Capsid Proteins/genetics , Chickens , DNA, Viral/genetics , DNA, Viral/metabolism , Gyrovirus/classification , Gyrovirus/isolation & purification , Nucleotide Motifs , Phylogeny , Polymerase Chain Reaction , Poultry Diseases/virology , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL