Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2021: 5516344, 2021.
Article in English | MEDLINE | ID: mdl-34368349

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic of pneumonia spreading around the world, leading to serious threats to public health and attracting enormous attention. There is an urgent need for sensitive diagnostic testing implementation to control and manage SARS-CoV-2 in public health laboratories. The quantitative reverse transcription PCR (RT-qPCR) assay is the gold standard method, but the sensitivity and specificity of SARS-CoV-2 testing are dependent on a number of factors. METHODS: We synthesized RNA based on the genes published to estimate the concentration of inactivated virus samples in a biosafety level 3 laboratory. The limit of detection (LOD), linearity, accuracy, and precision were evaluated according to the bioanalytical method validation guidelines. RESULTS: We found that the LOD reached around 3 copies/reaction. Furthermore, intra-assay precision, accuracy, and linearity met the accepted criterion with an RSD for copies of less than 25%, and linear regression met the accepted R 2 of 0.98. CONCLUSIONS: We suggest that synthesized RNA based on the database of the NCBI gene bank for estimating the concentration of inactivated virus samples provides a potential opportunity for reliable testing to diagnose coronavirus disease 2019 (COVID-19) as well as limit the spread of the disease. This method may be relatively quick and inexpensive, and it may be useful for developing countries during the pandemic era. In the long term, it is also applicable for evaluation, verification, validation, and external quality assessment.


Subject(s)
COVID-19/virology , Molecular Diagnostic Techniques/standards , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/genetics , Developing Countries/statistics & numerical data , Humans , Molecular Diagnostic Techniques/methods , Pandemics , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Validation Studies as Topic
2.
Biomolecules ; 9(12)2019 12 17.
Article in English | MEDLINE | ID: mdl-31861234

ABSTRACT

Polyacetylenic compounds isolated from Panax species are comprised of non-polar C17 compounds, exhibiting anti-inflammatory, antitumor, and antifungal activities. Panaxynol represents the major component of the essential oils of ginseng. We investigated whether panaxynol isolated from Panax vietnamensis (Vietnamese ginseng, VG) could prevent cisplatin-induced renal damage induced in vitro and in vivo. Cisplatin-induced apoptotic cell death was observed by staining with annexin V conjugated with Alexa Fluor 488, and western blotting evaluated the molecular mechanism. Panaxynol at concentrations above 0.25 µM prevented cisplatin-induced LLC-PK1 porcine renal proximal tubular cell death. LLC-PK1 cells treated with cisplatin demonstrated an increase in apoptotic cell death, whereas pretreatment with 2 and 4 µM panaxynol decreased this effect. Cisplatin demonstrated a marked increase in the phosphorylation of c-Jun N-terminal kinase (JNK), P38, and cleaved caspase-3. However, pretreatment with 2 and 4 µM panaxynol reversed the upregulated phosphorylation of JNK, P38, and the expression of cleaved caspase-3. We confirmed that the protective effect of panaxynol isolated from P. vietnamensis in LLC-PK1 cells was at least partially mediated by reducing the cisplatin-induced apoptotic damage. In the animal study, panaxynol treatment ameliorated body weight loss and blood renal function markers and downregulated the mRNA expression of inflammatory mediators.


Subject(s)
Acute Kidney Injury/drug therapy , Cisplatin/pharmacology , Diynes/pharmacology , Fatty Alcohols/pharmacology , Kidney Tubules, Proximal/drug effects , Panax/chemistry , Protective Agents/pharmacology , Acute Kidney Injury/chemically induced , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Blood Urea Nitrogen , Cell Survival/drug effects , Cells, Cultured , Creatinine/blood , Diynes/chemistry , Diynes/isolation & purification , Fatty Alcohols/chemistry , Fatty Alcohols/isolation & purification , Kidney Tubules, Proximal/pathology , Male , Mice , Mice, Inbred C57BL , Protective Agents/chemistry , Protective Agents/isolation & purification , Swine
3.
Alcohol Clin Exp Res ; 35(3): 408-19, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21143242

ABSTRACT

BACKGROUND: Alcoholism increases the risk of cirrhosis and/or hepatocellular carcinoma development. Iron, like ethanol, modulates the cell growth. However, the relationship between alcohol and iron toward hepatocyte proliferation has not been clearly elucidated. The purpose of this study was to evaluate, in the human HepaRG cell line model, the impact of ethanol on hepatocyte proliferation in relation to modulations of iron metabolism and the protective effect of iron metabolism manipulation by chelators in alcohol liver diseases. METHODS: The human hepatoma HepaRG cell line model was used. Cell viability was determined by measuring succinate dehydrogenase activity, total protein level by the Bradford method. DNA synthesis was evaluated by [(3)H]-methyl thymidine incorporation. Cytotoxicity was studied by release of lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT) in culture medium and apoptosis by measuring caspase 3/7 activity. Gene expression was analyzed by RT-qPCR. Total iron, soluble transferrin receptor, and ferritin levels were, respectively, measured by colorimetrical, immuno-nephelometrical, and immuno-turbidimetrical methods. Intracellular iron uptake and accumulation was examined by radionuclide (55)Fe (III) measurement and Perls staining. RESULTS: Results showed that ethanol decreased all the parameters associated with HepaRG cell proliferation (cell viability, total protein levels, and DNA synthesis) in a dose- and time-dependent manner. This effect was accompanied by cytotoxicity and apoptosis as evaluated by a significant increase in extracellular enzymes (LDH, AST, ALT) and caspase 3/7 activity, respectively. Ethanol exposure was accompanied by an increased cellular iron uptake, together with increased expression of genes involved in iron transport and storage such as l-ferritin, Divalent Metal transporter 1, transferrin, transferrin receptor 1, and ceruloplasmin. Ethanol impact was intensified by iron-citrate and decreased by iron chelators when added to the culture medium. CONCLUSIONS: The results indicated that (i) ethanol-induced iron metabolism dysfunction could be one of the underlying mechanisms of ethanol antiproliferative effect and (ii) exogenous iron may accentuate ethanol hepatoxicity. These data suggest that iron metabolism manipulation by chelators may be a useful therapeutic approach in alcohol-related liver diseases.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Cell Proliferation/drug effects , Ethanol/toxicity , Iron/metabolism , Liver Neoplasms/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...