Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
BMC Biol ; 22(1): 60, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38475850

ABSTRACT

BACKGROUND: Mitochondria participate in various cellular processes including energy metabolism, apoptosis, autophagy, production of reactive oxygen species, stress responses, inflammation and immunity. However, the role of mitochondrial metabolism in immune cells and tissues shaping the innate immune responses are not yet fully understood. We investigated the effects of tissue-specific mitochondrial perturbation on the immune responses at the organismal level. Genes for oxidative phosphorylation (OXPHOS) complexes cI-cV were knocked down in the fruit fly Drosophila melanogaster, targeting the two main immune tissues, the fat body and the immune cells (hemocytes). RESULTS: While OXPHOS perturbation in the fat body was detrimental, hemocyte-specific perturbation led to an enhanced immunocompetence. This was accompanied by the formation of melanized hemocyte aggregates (melanotic nodules), a sign of activation of cell-mediated innate immunity. Furthermore, the hemocyte-specific OXPHOS perturbation induced immune activation of hemocytes, resulting in an infection-like hemocyte profile and an enhanced immune response against parasitoid wasp infection. In addition, OXPHOS perturbation in hemocytes resulted in mitochondrial membrane depolarization and upregulation of genes associated with the mitochondrial unfolded protein response. CONCLUSIONS: Overall, we show that while the effects of mitochondrial perturbation on immune responses are highly tissue-specific, mild mitochondrial dysfunction can be beneficial in immune-challenged individuals and contributes to variation in infection outcomes among individuals.


Subject(s)
Drosophila , Wasps , Animals , Humans , Drosophila melanogaster/metabolism , Wasps/genetics , Mitochondria , Immunity, Innate , Hemocytes/metabolism
2.
G3 (Bethesda) ; 13(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37017029

ABSTRACT

The Drosophila tko25t point mutation in the gene encoding mitoribosomal protein S12 produces a complex phenotype of multiple respiratory chain deficiency, developmental delay, bang-sensitivity, impaired hearing, sugar and antibiotic sensitivity, and impaired male courtship. Its phenotypic severity was previously shown to be alleviated by inbreeding and to vary with mitochondrial genetic background. Here, we show similarly profound effects conferred by nuclear genetic background. We backcrossed tko25t into each of 2 standard nuclear backgrounds, Oregon R and w1118, the latter used as recipient line in many transgenic applications requiring selection for the white minigene marker. In the w1118 background, tko25t flies showed a moderate developmental delay and modest bang-sensitivity. In the Oregon R background, males showed longer developmental delay and more severe bang-sensitivity, and we were initially unable to produce homozygous tko25t females in sufficient numbers to conduct a meaningful analysis. When maintained as a balanced stock over 2 years, tko25t flies in the Oregon R background showed clear phenotypic improvement though were still more severely affected than in the w1118 background. Phenotypic severity did not correlate with the expression level of the tko gene. Analysis of tko25t hybrids between the 2 backgrounds indicated that phenotypic severity was conferred by autosomal, X-chromosomal, and parent-of-origin-dependent determinants. Although some of these effects may be tko25t specific, we recommend that, in order to minimize genetic drift and confounding background effects, the genetic background of nonlethal mutants should be controlled by regular backcrossing, even if stocks are usually maintained over a balancer chromosome.


Subject(s)
Drosophila , Protein Biosynthesis , Animals , Female , Male , Drosophila/genetics , Drosophila/metabolism , Phenotype , Animals, Genetically Modified , Mitochondrial Proteins/genetics , Mutation , Drosophila melanogaster/genetics
3.
Fly (Austin) ; 13(1-4): 12-28, 2019.
Article in English | MEDLINE | ID: mdl-31526131

ABSTRACT

The Drosophila bang-sensitive mutant tko25t, manifesting a global deficiency in oxidative phosphorylation due to a mitochondrial protein synthesis defect, exhibits a pronounced delay in larval development. We previously identified a number of metabolic abnormalities in tko25t larvae, including elevated pyruvate and lactate, and found the larval gut to be a crucial tissue for the regulation of larval growth in the mutant. Here we established that expression of wild-type tko in any of several other tissues of tko25t also partially alleviates developmental delay. The effects appeared to be additive, whilst knockdown of tko in a variety of specific tissues phenocopied tko25t, producing developmental delay and bang-sensitivity. These findings imply the existence of a systemic signal regulating growth in response to mitochondrial dysfunction. Drugs and RNAi-targeted on pyruvate metabolism interacted with tko25t in ways that implicated pyruvate or one of its metabolic derivatives in playing a central role in generating such a signal. RNA-seq revealed that dietary pyruvate-induced changes in transcript representation were mostly non-coherent with those produced by tko25t or high-sugar, consistent with the idea that growth regulation operates primarily at the translational and/or metabolic level.


Subject(s)
Drosophila melanogaster/growth & development , Gene Expression Regulation, Developmental/physiology , Mitochondria/physiology , Pyruvic Acid/metabolism , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Larva/growth & development
4.
J Exp Zool A Ecol Integr Physiol ; 331(6): 341-356, 2019 07.
Article in English | MEDLINE | ID: mdl-31218852

ABSTRACT

The mitochondrial alternative oxidase, AOX, present in most eukaryotes apart from vertebrates and insects, catalyzes the direct oxidation of ubiquinol by oxygen, by-passing the terminal proton-motive steps of the respiratory chain. Its physiological role is not fully understood, but it is proposed to buffer stresses in the respiratory chain similar to those encountered in mitochondrial diseases in humans. Previously, we found that the ubiquitous expression of AOX from Ciona intestinalis in Drosophila perturbs the development of flies cultured under low-nutrient conditions (media containing only glucose and yeast). Here we tested the effects of a wide range of nutritional supplements on Drosophila development, to gain insight into the physiological mechanism underlying this developmental failure. On low-nutrient medium, larvae contained decreased amounts of triglycerides, lactate, and pyruvate, irrespective of AOX expression. Complex food supplements, including treacle (molasses), restored normal development to AOX-expressing flies, but many individual additives did not. Inhibition of AOX by treacle extract was excluded as a mechanism, since the supplement did not alter the enzymatic activity of AOX in vitro. Furthermore, antibiotics did not influence the organismal phenotype, indicating that commensal microbes were not involved. Fractionation of treacle identified a water-soluble fraction with low solubility in ethanol, rich in lactate and tricarboxylic acid cycle intermediates, which contained the critical activity. We propose that the partial activation of AOX during metamorphosis impairs the efficient use of stored metabolites, resulting in developmental failure.


Subject(s)
Animal Nutritional Physiological Phenomena , Drosophila/enzymology , Mitochondria/genetics , Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism , Animals , Animals, Genetically Modified/growth & development , Animals, Genetically Modified/metabolism , Ciona intestinalis/enzymology , Diet , Drosophila/growth & development , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , HEK293 Cells , Humans , Larva/enzymology , Larva/growth & development , Metamorphosis, Biological , Mitochondria/enzymology , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Molasses/analysis , Oxidoreductases/genetics , Plant Proteins/genetics
5.
Nucleic Acids Res ; 46(10): 5209-5226, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29518244

ABSTRACT

RNA 3' polyadenylation is known to serve diverse purposes in biology, in particular, regulating mRNA stability and translation. Here we determined that, upon exposure to high levels of the intercalating agent ethidium bromide (EtBr), greater than those required to suppress mitochondrial transcription, mitochondrial tRNAs in human cells became polyadenylated. Relaxation of the inducing stress led to rapid turnover of the polyadenylated tRNAs. The extent, kinetics and duration of tRNA polyadenylation were EtBr dose-dependent, with mitochondrial tRNAs differentially sensitive to the stress. RNA interference and inhibitor studies indicated that ongoing mitochondrial ATP synthesis, plus the mitochondrial poly(A) polymerase and SUV3 helicase were required for tRNA polyadenylation, while polynucleotide phosphorylase counteracted the process and was needed, along with SUV3, for degradation of the polyadenylated tRNAs. Doxycycline treatment inhibited both tRNA polyadenylation and turnover, suggesting a possible involvement of the mitoribosome, although other translational inhibitors had only minor effects. The dysfunctional tRNALeu(UUR) bearing the pathological A3243G mutation was constitutively polyadenylated at a low level, but this was markedly enhanced after doxycycline treatment. We propose that polyadenylation of structurally and functionally abnormal mitochondrial tRNAs entrains their PNPase/SUV3-mediated destruction, and that this pathway could play an important role in mitochondrial diseases associated with tRNA mutations.


Subject(s)
Mitochondria/genetics , RNA, Transfer/metabolism , Cell Line, Tumor , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Ethidium/pharmacology , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Poly A/metabolism , Polyadenylation , RNA, Transfer/chemistry , RNA, Transfer, Leu/chemistry , RNA, Transfer, Leu/metabolism
7.
PLoS One ; 11(1): e0145836, 2016.
Article in English | MEDLINE | ID: mdl-26812173

ABSTRACT

The Drosophila mutant tko25t exhibits a deficiency of mitochondrial protein synthesis, leading to a global insufficiency of respiration and oxidative phosphorylation. This entrains an organismal phenotype of developmental delay and sensitivity to seizures induced by mechanical stress. We found that the mutant phenotype is exacerbated in a dose-dependent fashion by high dietary sugar levels. tko25t larvae were found to exhibit severe metabolic abnormalities that were further accentuated by high-sugar diet. These include elevated pyruvate and lactate, decreased ATP and NADPH. Dietary pyruvate or lactate supplementation phenocopied the effects of high sugar. Based on tissue-specific rescue, the crucial tissue in which this metabolic crisis initiates is the gut. It is accompanied by down-regulation of the apparatus of cytosolic protein synthesis and secretion at both the RNA and post-translational levels, including a novel regulation of S6 kinase at the protein level.


Subject(s)
Diet , Dietary Sucrose/metabolism , Drosophila/metabolism , Mitochondria/metabolism , Animals , Disease Models, Animal , Female , Lactic Acid/metabolism , Male , Mitochondria/drug effects , Pyruvic Acid/metabolism , Reactive Oxygen Species/metabolism
8.
Front Zool ; 12: 19, 2015.
Article in English | MEDLINE | ID: mdl-26300950

ABSTRACT

BACKGROUND: Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous enzymes that catalyze the reversible hydration reaction of carbon dioxide. CAs are present as six structurally divergent enzyme families: α, ß, γ, δ, ζ and η. ß-CAs have a wide distribution across different species including invertebrates. Previously, we showed that Drosophila melanogaster ß-CA is a highly active mitochondrial enzyme. In this study, we investigated the function of Drosophila ß-CA by silencing the expression of the ß-CA gene using UAS/GAL4-based RNA interference (RNAi) in Drosophila in vivo. RESULTS: Crossing ß-CA RNAi lines over ubiquitous Actin driver flies did not produce any viable progeny, indicating that ß-CA expression is required for fly development. RNAi silencing of ß-CA ubiquitously in adult flies did not affect their survival rate or function of mitochondrial electron transport chain. Importantly, ß-CA RNAi led to impaired reproduction. All ß-CA knockdown females were sterile, and produced few or no eggs. Whole ovaries of knockdown females looked normal but upon cadherin staining, there was an apparent functional defect in migration of border cells, which are considered essential for normal fertilization. CONCLUSIONS: These results indicate that although Drosophila ß-CA is dispensable for survival of adult flies, it is essential for female fertility.

9.
Biochim Biophys Acta ; 1837(11): 1861-1869, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25124484

ABSTRACT

An assembled cDNA coding for the putative single-subunit NADH dehydrogenase (NDX) of Ciona intestinalis was introduced into Drosophila melanogaster. The encoded protein was found to localize to mitochondria and to confer rotenone-insensitive substrate oxidation in organello. Transgenic flies exhibited increased resistance to menadione, starvation and temperature stress, and manifested a sex and diet-dependent increase in mean lifespan of 20-50%. However, NDX was able only weakly to complement the phenotypes produced by the knockdown of complex I subunits.

10.
Dis Model Mech ; 7(6): 635-48, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24812436

ABSTRACT

A point mutation in the Drosophila gene that codes for the major adult isoform of adenine nuclear translocase (ANT) represents a model for human diseases that are associated with ANT insufficiency [stress-sensitive B(1) (sesB(1))]. We characterized the organismal, bioenergetic and molecular phenotype of sesB(1) flies then tested strategies to compensate the mutant phenotype. In addition to developmental delay and mechanical-stress-induced seizures, sesB(1) flies have an impaired response to sound, defective male courtship, female sterility and curtailed lifespan. These phenotypes, excluding the latter two, are shared with the mitoribosomal protein S12 mutant, tko(25t). Mitochondria from sesB(1) adults showed a decreased respiratory control ratio and downregulation of cytochrome oxidase. sesB(1) adults exhibited ATP depletion, lactate accumulation and changes in gene expression that were consistent with a metabolic shift towards glycolysis, characterized by activation of lactate dehydrogenase and anaplerotic pathways. Females also showed downregulation of many genes that are required for oogenesis, and their eggs, although fertilized, failed to develop to the larval stages. The sesB(1) phenotypes of developmental delay and mechanical-stress-induced seizures were alleviated by an altered mitochondrial DNA background. Female sterility was substantially rescued by somatic expression of alternative oxidase (AOX) from the sea squirt Ciona intestinalis, whereas AOX did not alleviate developmental delay. Our findings illustrate the potential of different therapeutic strategies for ANT-linked diseases, based on alleviating metabolic stress.


Subject(s)
Adenine Nucleotide Translocator 1/genetics , Drosophila/genetics , Mitochondrial Diseases/genetics , Amino Acid Sequence , Animals , Base Sequence , DNA , Disease Models, Animal , Female , Male , Molecular Sequence Data , Oxidative Phosphorylation , Phenotype , Point Mutation
11.
Hum Mol Genet ; 23(8): 2078-93, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24293544

ABSTRACT

Mitochondrial dysfunction is a significant factor in human disease, ranging from systemic disorders of childhood to cardiomyopathy, ischaemia and neurodegeneration. Cytochrome oxidase, the terminal enzyme of the mitochondrial respiratory chain, is a frequent target. Lower eukaryotes possess alternative respiratory-chain enzymes that provide non-proton-translocating bypasses for respiratory complexes I (single-subunit reduced nicotinamide adenine dinucleotide dehydrogenases, e.g. Ndi1 from yeast) or III + IV [alternative oxidase (AOX)], under conditions of respiratory stress or overload. In previous studies, it was shown that transfer of yeast Ndi1 or Ciona intestinalis AOX to Drosophila was able to overcome the lethality produced by toxins or partial knockdown of complex I or IV. Here, we show that AOX can provide a complete or substantial rescue of a range of phenotypes induced by global or tissue-specific knockdown of different cIV subunits, including integral subunits required for catalysis, as well as peripheral subunits required for multimerization and assembly. AOX was also able to overcome the pupal lethality produced by muscle-specific knockdown of subunit CoVb, although the rescued flies were short lived and had a motility defect. cIV knockdown in neurons was not lethal during development but produced a rapidly progressing locomotor and seizure-sensitivity phenotype, which was substantially alleviated by AOX. Expression of Ndi1 exacerbated the neuronal phenotype produced by cIV knockdown. Ndi1 expressed in place of essential cI subunits produced a distinct residual phenotype of delayed development, bang sensitivity and male sterility. These findings confirm the potential utility of alternative respiratory chain enzymes as tools to combat mitochondrial disease, while indicating important limitations thereof.


Subject(s)
Animals, Genetically Modified/metabolism , Cytochrome-c Oxidase Deficiency/complications , Developmental Disabilities/prevention & control , Drosophila melanogaster/metabolism , Electron Transport Complex IV/metabolism , Infertility, Male/prevention & control , Mitochondrial Proteins/metabolism , Neurodegenerative Diseases/prevention & control , Oxidoreductases/metabolism , Plant Proteins/metabolism , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/growth & development , Blotting, Western , Cells, Cultured , Cytochrome-c Oxidase Deficiency/genetics , Cytochrome-c Oxidase Deficiency/metabolism , Developmental Disabilities/etiology , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Electron Transport Complex IV/antagonists & inhibitors , Electron Transport Complex IV/genetics , Female , Humans , Immunoenzyme Techniques , Infertility, Male/etiology , Male , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Proteins/genetics , Neurodegenerative Diseases/etiology , Oxidoreductases/genetics , Phenotype , Plant Proteins/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
12.
Proc Natl Acad Sci U S A ; 107(20): 9105-10, 2010 May 18.
Article in English | MEDLINE | ID: mdl-20435911

ABSTRACT

Mutations in mitochondrial oxidative phosphorylation complex I are associated with multiple pathologies, and complex I has been proposed as a crucial regulator of animal longevity. In yeast, the single-subunit NADH dehydrogenase Ndi1 serves as a non-proton-translocating alternative enzyme that replaces complex I, bringing about the reoxidation of intramitochondrial NADH. We have created transgenic strains of Drosophila that express yeast NDI1 ubiquitously. Mitochondrial extracts from NDI1-expressing flies displayed a rotenone-insensitive NADH dehydrogenase activity, and functionality of the enzyme in vivo was confirmed by the rescue of lethality resulting from RNAi knockdown of complex I. NDI1 expression increased median, mean, and maximum lifespan independently of dietary restriction, and with no change in sirtuin activity. NDI1 expression mitigated the aging associated decline in respiratory capacity and the accompanying increase in mitochondrial reactive oxygen species production, and resulted in decreased accumulation of markers of oxidative damage in aged flies. Our results support a central role of mitochondrial oxidative phosphorylation complex I in influencing longevity via oxidative stress, independently of pathways connected to nutrition and growth signaling.


Subject(s)
Aging/metabolism , Drosophila melanogaster/physiology , Electron Transport Complex I/metabolism , Longevity/physiology , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Animals , Blotting, Western , Caloric Restriction , Drosophila melanogaster/enzymology , Electron Transport Complex I/genetics , Histocytochemistry , Longevity/genetics , Mitochondria/metabolism , Oxidative Stress/genetics , Oxidative Stress/physiology , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction
13.
Cell Metab ; 9(5): 449-60, 2009 May.
Article in English | MEDLINE | ID: mdl-19416715

ABSTRACT

Defects in mitochondrial OXPHOS are associated with diverse and mostly intractable human disorders. The single-subunit alternative oxidase (AOX) found in many eukaryotes, but not in arthropods or vertebrates, offers a potential bypass of the OXPHOS cytochrome chain under conditions of pathological OXPHOS inhibition. We have engineered Ciona intestinalis AOX for conditional expression in Drosophila melanogaster. Ubiquitous AOX expression produced no detrimental phenotype in wild-type flies. However, mitochondrial suspensions from AOX-expressing flies exhibited a significant cyanide-resistant substrate oxidation, and the flies were partially resistant to both cyanide and antimycin. AOX expression was able to complement the semilethality of partial knockdown of both cyclope (COXVIc) and the complex IV assembly factor Surf1. It also rescued the locomotor defect and excess mitochondrial ROS production of flies mutated in dj-1beta, a Drosophila homolog of the human Parkinson's disease gene DJ1. AOX appears to offer promise as a wide-spectrum therapeutic tool in OXPHOS disorders.


Subject(s)
Drosophila/metabolism , Mitochondria/enzymology , Oxidative Phosphorylation , Oxidoreductases/biosynthesis , Animals , Antimycin A/analogs & derivatives , Antimycin A/pharmacology , Ciona intestinalis/enzymology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Enzyme Inhibitors/pharmacology , Gene Knockdown Techniques , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Nerve Tissue Proteins/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phenotype , Plant Proteins , Potassium Cyanide/pharmacology , Protein Deglycase DJ-1 , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...