Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 305(12): L964-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24142520

ABSTRACT

The pathogenesis of chronic obstructive pulmonary disease is not fully understood. The objective of this study was to compare circulating endothelial progenitor cells in patients with chronic obstructive pulmonary disease to age, sex, and cigarette smoking matched healthy controls. Patients with chronic obstructive pulmonary disease (n = 37) and healthy controls (n = 19) were matched by age, sex, and smoking status. Circulating hematopoietic progenitor cells (CD34(+) or CD133(+) mononuclear cells) and endothelial progenitor cells (CD34(+)KDR(+) or CD34(+)CD133(+)KDR(+) mononuclear cells) were quantified by flow cytometry. Endothelial cell-colony forming units from peripheral blood mononuclear cells were quantified in vitro and phenotypic analysis carried out using immunocytochemistry. Patients with chronic obstructive pulmonary disease had more circulating mononuclear cells compared with controls (8.4 ± 0.6 vs. 5.9 ± 0.4 × 10(9) cells/l; P = 0.02). CD34(+) hematopoietic progenitor cells were reduced as a proportion of mononuclear cells in patients compared with controls (0.99 ± 0.12 vs. 1.9 ± 0.12%; P = 0.02); however, there were no differences in the absolute number of CD34(+), CD34(+)KDR(+), or CD34(+)CD133(+)KDR(+) cells (P > 0.05 for all). Endothelial cell-colony forming units were increased in patients with chronic obstructive pulmonary disease compared with controls (13.7 ± 5.2 vs. 2.7 ± 0.9 colonies; P = 0.048). In contrast to previous studies, the number of circulating progenitor cells was not reduced in patients with chronic obstructive pulmonary disease compared with carefully matched controls. It seems unlikely that circulating endothelial progenitor cells or failure of angiogenesis plays a central role in the development of emphysema.


Subject(s)
Endothelial Cells/pathology , Pulmonary Disease, Chronic Obstructive/pathology , Stem Cells/pathology , Aged , Aged, 80 and over , Antigens, CD/immunology , Cell Differentiation/immunology , Cell Differentiation/physiology , Endothelial Cells/immunology , Female , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/immunology , Stem Cells/immunology
2.
Stem Cells ; 31(2): 338-48, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23165527

ABSTRACT

A decade of research has sought to identify circulating endothelial progenitor cells (EPC) in order to harness their potential for cardiovascular regeneration. Endothelial outgrowth cells (EOC) most closely fulfil the criteria for an EPC, but their origin remains obscure. Our aim was to identify the source and precursor of EOC and to assess their regenerative potential compared to mature endothelial cells. EOC are readily isolated from umbilical cord blood (6/6 donors) and peripheral blood mononuclear cells (4/6 donors) but not from bone marrow (0/6) or peripheral blood following mobilization with granulocyte-colony stimulating factor (0/6 donors). Enrichment and depletion of blood mononuclear cells demonstrated that EOC are confined to the CD34(+)CD133(-)CD146(+) cell fraction. EOC derived from blood mononuclear cells are indistinguishable from mature human umbilical vein endothelial cells (HUVEC) by morphology, surface antigen expression, immunohistochemistry, real-time polymerase chain reaction, proliferation, and functional assessments. In a subcutaneous sponge model of angiogenesis, both EOC and HUVEC contribute to de novo blood vessel formation giving rise to a similar number of vessels (7.0 ± 2.7 vs. 6.6 ± 3.7 vessels, respectively, n = 9). Bone marrow-derived outgrowth cells isolated under the same conditions expressed mesenchymal markers rather than endothelial cell markers and did not contribute to blood vessels in vivo. In this article, we confirm that EOC arise from CD34(+)CD133(-)CD146(+) mononuclear cells and are similar, if not identical, to mature endothelial cells. Our findings suggest that EOC do not arise from bone marrow and challenge the concept of a bone marrow-derived circulating precursor for endothelial cells.


Subject(s)
Endothelial Cells/cytology , Fetal Blood/cytology , Leukocytes, Mononuclear/cytology , Skin/blood supply , Antigens, CD/genetics , Biomarkers/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Lineage , Cells, Cultured , Endothelial Cells/metabolism , Fetal Blood/metabolism , Gene Expression , Granulocyte Colony-Stimulating Factor/pharmacology , Humans , Immunophenotyping , Leukocytes, Mononuclear/metabolism , Neovascularization, Physiologic , Skin/cytology , Tissue Culture Techniques
3.
Adv Healthc Mater ; 1(5): 646-56, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23184801

ABSTRACT

Rapid endothelisation is of critical importance in the prevention of adverse remodelling after device implantation. Currently, there is a need for alternative strategies to promote re-endothelialisation for intravascular stents and vascular grafts. Using polymer microarray technology 345 polymers are comprehensively assessed and a matrix is identified that specifically supports both progenitor and mature endothelial cell activity in vitro and in vivo while minimising platelet attachment.


Subject(s)
Blood Vessel Prosthesis , Coated Materials, Biocompatible/chemistry , Endothelial Cells/physiology , Cell Adhesion/physiology , Cell Proliferation , Cell Survival/physiology , Cells, Cultured , Endothelial Cells/cytology , Humans , Materials Testing , Stents
4.
Stem Cell Res Ther ; 3(4): 23, 2012 Jul 03.
Article in English | MEDLINE | ID: mdl-22759659

ABSTRACT

INTRODUCTION: Endothelial progenitor cells (EPC) capable of initiating or augmenting vascular growth were recently identified within the small population of CD34-expressing cells that circulate in human peripheral blood and which are considered hematopoietic progenitor cells (HPC). Soon thereafter human HPC began to be used in clinical trials as putative sources of EPC for therapeutic vascular regeneration, especially in myocardial and critical limb ischemias. However, unlike HPC where hematopoietic efficacy is related quantitatively to CD34+ cell numbers implanted, there has been no consensus on how to measure EPC or how to assess cellular graft potency for vascular regeneration. We employed an animal model of spontaneous neovascularization to simultaneously determine whether human cells incorporate into new vessels and to quantify the effect of different putative angiogenic cells on vascularization in terms of number of vessels generated. We systematically compared competence for therapeutic angiogenesis in different sources of human cells with putative angiogenic potential, to begin to provide some rationale for optimising cell procurement for this therapy. METHODS: Human cells employed were mononuclear cells from normal peripheral blood and HPC-rich cell sources (umbilical cord blood, mobilized peripheral blood, bone marrow), CD34+ enriched or depleted subsets of these, and outgrowth cell populations from these. An established sponge implant angiogenesis model was adapted to determine the effects of different human cells on vascularization of implants in immunodeficient mice. Angiogenesis was quantified by vessel density and species of origin by immunohistochemistry. RESULTS: CD34+ cells from mobilized peripheral blood or umbilical cord blood HPC were the only cells to promote new vessel growth, but did not incorporate into vessels. Only endothelial outgrowth cells (EOC) incorporated into vessels, but these did not promote vessel growth. CONCLUSIONS: These studies indicate that, since EPC are very rare, any benefit seen in clinical trials of HPC in therapeutic vascular regeneration is predominantly mediated by indirect proangiogenic effects rather than through direct incorporation of any rare EPC contained within these sources. It should be possible to produce autologous EOC for therapeutic use, and evaluate the effect of EPC distinct from, or in synergy with, the proangiogenic effects of HPC therapies.


Subject(s)
Hematopoietic Stem Cells/cytology , Neovascularization, Physiologic , Animals , Antigens, CD/metabolism , Blood Cells/cytology , Blood Cells/drug effects , Blood Vessels/pathology , Bone Marrow Cells/cytology , Cell Culture Techniques , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Endothelial Cells/cytology , Endothelial Cells/metabolism , Fetal Blood/cytology , Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Vascular Diseases/pathology , Vascular Diseases/therapy
6.
Am J Physiol Heart Circ Physiol ; 298(6): H2054-61, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20382859

ABSTRACT

Vascular injury causes acute systemic inflammation and mobilizes endothelial progenitor cells (EPCs) and endothelial cell (EC) colony-forming units (EC-CFUs). Whether such mobilization occurs as part of a nonspecific acute phase response or is a phenomenon specific to vascular injury remains unclear. We aimed to determine the effect of acute systemic inflammation on EPCs and EC-CFU mobilization in the absence of vascular injury. Salmonella typhus vaccination was used as a model of acute systemic inflammation. In a double-blind randomized crossover study, 12 healthy volunteers received S. typhus vaccination or placebo. Phenotypic EPC populations enumerated by flow cytometry [CD34(+)VEGF receptor (VEGF)R-2(+)CD133(+), CD14(+)VEGFR-2(+)Tie2(+), CD45(-)CD34(+), as a surrogate for late outgrowth EPCs, and CD34(+)CXCR-4(+)], EC-CFUs, and serum cytokine concentrations (high sensitivity C-reactive protein, IL-6, and stromal-derived factor-1) were quantified during the first 7 days. Vaccination increased circulating leukocyte (9.8 + or - 0.6 vs. 5.1 + or - 0.2 x 10(9) cells/l, P < 0.0001), serum IL-6 [0.95 (0-1.7) vs. 0 (0-0) ng/l, P = 0.016], and VEGF-A [60 (45-94) vs. 43 (21-64) pg/l, P = 0.006] concentrations at 6 h and serum high sensitivity C-reactive protein at 24 h [2.7 (1.4-3.6) vs. 0.4 (0.2-0.8) mg/l, P = 0.037]. Vaccination caused a 56.7 + or - 7.6% increase in CD14(+) cells at 6 h (P < 0.001) and a 22.4 + or - 6.9% increase in CD34(+) cells at 7 days (P = 0.04). EC-CFUs, putative vascular progenitors, and the serum stromal-derived factor-1 concentration were unaffected throughout the study period (P > 0.05 for all). In conclusion, acute systemic inflammation causes nonspecific mobilization of hematopoietic progenitor cells, although it does not selectively mobilize putative vascular progenitors. We suggest that systemic inflammation is not the primary stimulus for EPC mobilization after acute vascular injury.


Subject(s)
Endothelium, Vascular/cytology , Hematopoietic Stem Cells/cytology , Inflammation/blood , Inflammation/etiology , Mesenchymal Stem Cells/cytology , Salmonella Vaccines/adverse effects , Adult , Antigens, CD34/metabolism , C-Reactive Protein/metabolism , Cross-Over Studies , Cytokines/blood , Double-Blind Method , Endothelium, Vascular/immunology , Hematopoietic Stem Cells/immunology , Humans , Leukocytes/cytology , Leukocytes/immunology , Lipopolysaccharide Receptors/metabolism , Male , Mesenchymal Stem Cells/immunology , Salmonella typhi
7.
J Transl Med ; 5: 53, 2007 Oct 30.
Article in English | MEDLINE | ID: mdl-17971220

ABSTRACT

BACKGROUND: Autologous mobilised peripheral blood stem cell (PBSC) transplantation is now a standard approach in the treatment of haematological diseases to reconstitute haematopoiesis following myeloablative chemotherapy. However, there remains a period of severe neutropenia and thrombocytopenia before haematopoietic reconstitution is achieved. Ex vivo expanded PBSC have been employed as an adjunct to unmanipulated HSC transplantation, but have tended to be produced using complex cytokine mixtures aimed at multilineage (neutrophil and megakaryocyte) progenitor expansion. These have been reported to reduce or abrogate neutropenia but have little major effect on thrombocytopenia. Selective megakaryocyte expansion has been to date ineffective in reducing thrombocytopenia. This study was implemented to evaluate neutrophil specific rather than multilineage ex vivo expansion of PBSC for specifically focusing on reduction or abrogation of neutropenia. METHODS: CD34+ cells (PBSC) were enriched from peripheral blood mononuclear cells following G-CSF-mobilisation and cultured with different permutations of cytokines to determine optimal cytokine combinations and doses for expansion and functional differentiation and maturation of neutrophils and their progenitors. Results were assessed by cell number, morphology, phenotype and function. RESULTS: A simple cytokine combination, SCF + Flt3-L + G-CSF, synergised to optimally expand and mature neutrophil progenitors assessed by cell number, phenotype, morphology and function (superoxide respiratory burst measured by chemiluminescence). G-CSF appears mandatory for functional maturation. Addition of other commonly employed cytokines, IL-3 and IL-6, had no demonstrable additive effect on numbers or function compared to this optimal combination. Addition of TPO, commonly included in multilineage progenitor expansion for development of megakaryocytes, reduced the maturation of neutrophil progenitors as assessed by number, morphology and function (respiratory burst activity). CONCLUSION: Given that platelet transfusion support is available for autologous PBSC transplantation but granulocyte transfusion is generally lacking, and that multilineage expanded PBSC do not reduce thrombocytopenia, we suggest that instead of multilineage expansion selective neutrophil expansion based on this relatively simple cytokine combination might be prioritized for development for clinical use as an adjunct to unmanipulated PBSC transplantation to reduce or abrogate post-transplant neutropenia.


Subject(s)
Granulocyte Colony-Stimulating Factor/pharmacology , Membrane Proteins/pharmacology , Neutrophils/physiology , Stem Cell Factor/pharmacology , Stem Cells/physiology , Antigens, CD34/blood , Cell Division/drug effects , Cytokines/pharmacology , Hematopoiesis , Humans , Neutrophils/drug effects , Peroxidase/metabolism , Platelet Transfusion , Stem Cells/drug effects
8.
J Transl Med ; 5: 37, 2007 Jul 18.
Article in English | MEDLINE | ID: mdl-17640360

ABSTRACT

BACKGROUND: The discovery of adult endothelial progenitor cells (EPC) offers potential for vascular regenerative therapies. The expression of CD34 and VEGFR2 by EPC indicates a close relationship with haematopoietic progenitor cells (HPC), and HPC-rich sources have been used to treat cardiac and limb ischaemias with apparent clinical benefit. However, the laboratory characterisation of the vasculogenic capability of potential or actual therapeutic cell autograft sources is uncertain since the description of EPC remains elusive. Various definitions of EPC based on phenotype and more recently on colony formation (CFU-EPC) have been proposed. METHODS: We determined EPC as defined by proposed phenotype definitions (flow cytometry) and by CFU-EPC in HPC-rich sources: bone marrow (BM); cord blood (CB); and G-CSF-mobilised peripheral blood (mPB), and in HPC-poor normal peripheral blood (nPB). RESULTS: As expected, the highest numbers of cells expressing the HPC markers CD34 or CD133 were found in mPB and least in nPB. The proportions of CD34+ cells co-expressing CD133 is of the order mPB>CB>BM approximately nPB. CD34+ cells co-expressing VEGFR2 were also most frequent in mPB. In contrast, CFU-EPC were virtually absent in mPB and were most readily detected in nPB, the source lowest in HPC. CONCLUSION: HPC sources differ in their content of putative EPC. Normal peripheral blood, poor in HPC and in HPC-related phenotypically defined EPC, is the richest source of CFU-EPC, suggesting no direct relationship between the proposed EPC immunophenotypes and CFU-EPC potential. It is not apparent whether either of these EPC measurements, or any, is an appropriate indicator of the therapeutic vasculogenic potential of autologous HSC sources.


Subject(s)
Colony-Forming Units Assay , Endothelial Cells/cytology , Endothelial Cells/immunology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Immunophenotyping , AC133 Antigen , Antigens, CD/metabolism , Antigens, CD34/metabolism , Cell Count , Glycoproteins/metabolism , Hematopoietic Stem Cell Transplantation , Humans , Peptides/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...