Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(12): 10559-10567, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35382301

ABSTRACT

Halide perovskite materials have been recently recognized as promising materials for piezoelectric nanogenerators (PENGs) due to their potentially strong ferroelectricity and piezoelectricity. Here, we report a new method using a poly(vinylidene fluoride) (PVDF) polymer to achieve excellent long-term stable black γ-phase CsPbI3 and explore the piezoelectric performance on a CsPbI3@PVDF composite film. The PVDF-stabilized black-phase CsPbI3 perovskite composite film can be stable under ambient conditions for more than 60 days and over 24 h while heated at 80 °C. Piezoresponse force spectroscopy measurements revealed that the black CsPbI3/PVDF composite contains well-developed ferroelectric properties with a high piezoelectric charge coefficient (d 33) of 28.4 pm/V. The black phase of the CsPbI3-based PVDF composite exhibited 2 times higher performance than the yellow phase of the CsPbI3-based composite. A layer-by-layer stacking method was adopted to tune the thickness of the composite film. A five-layer black-phase CsPbI3@PVDF composite PENG exhibited a voltage output of 26 V and a current density of 1.1 µA/cm2. The output power can reach a peak value of 25 µW. Moreover, the PENG can be utilized to charge capacitors through a bridge rectifier and display good durability without degradation for over 14 000 cyclic tests. These results reveal the feasibility of the all-inorganic perovskite for the design and development of high-performance piezoelectric nanogenerators.

2.
Adv Sci (Weinh) ; 9(2): e2101661, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34766476

ABSTRACT

Hybrid materials taking advantage of the different physical properties of materials are highly attractive for numerous applications in today's science and technology. Here, it is demonstrated that epitaxial bi-domain III-V/Si are hybrid structures, composed of bulk photo-active semiconductors with 2D topological semi-metallic vertical inclusions, endowed with ambipolar properties. By combining structural, transport, and photoelectrochemical characterizations with first-principle calculations, it is shown that the bi-domain III-V/Si materials are able within the same layer to absorb light efficiently, separate laterally the photo-generated carriers, transfer them to semimetal singularities, and ease extraction of both electrons and holes vertically, leading to efficient carrier collection. Besides, the original topological properties of the 2D semi-metallic inclusions are also discussed. This comb-like heterostructure not only merges the superior optical properties of semiconductors with good transport properties of metallic materials, but also combines the high efficiency and tunability afforded by III-V inorganic bulk materials with the flexible management of nano-scale charge carriers usually offered by blends of organic materials. Physical properties of these novel hybrid heterostructures can be of great interest for energy harvesting, photonic, electronic or computing devices.

3.
Nanoscale Adv ; 1(9): 3372-3378, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-36133562

ABSTRACT

The interface resistance at metal/semiconductor junctions has been a key issue for decades. The control of this resistance is dependent on the possibility to tune the Schottky barrier height. However, Fermi level pinning in these systems forbids a total control over interface resistance. The introduction of 2D crystals between semiconductor surfaces and metals may be an interesting route towards this goal. In this work, we study the influence of the introduction of a graphene monolayer between a metal and silicon on the Schottky barrier height. We used X-ray photoemission spectroscopy to rule out the presence of oxides at the interface, the absence of pinning of the Fermi level and the strong reduction of the Schottky barrier height. We then performed a multiscale transport analysis to determine the transport mechanism. The consistency in the measured barrier height at different scales confirms the good quality of our junctions and the role of graphene in the drastic reduction of the barrier height.

4.
Nanoscale Res Lett ; 7(1): 643, 2012 Nov 23.
Article in English | MEDLINE | ID: mdl-23176537

ABSTRACT

(In,Ga)As/GaP(001) quantum dots (QDs) are grown by molecular beam epitaxy and studied both theoretically and experimentally. The electronic band structure is simulated using a combination of k·p and tight-binding models. These calculations predict an indirect to direct crossover with the In content and the size of the QDs. The optical properties are then studied in a low-In-content range through photoluminescence and time-resolved photoluminescence experiments. It suggests the proximity of two optical transitions of indirect and direct types.

SELECTION OF CITATIONS
SEARCH DETAIL
...