Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(19): e202401818, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38465851

ABSTRACT

Magnesium (Mg) batteries hold promise as a large-scale energy storage solution, but their progress has been hindered by the lack of high-performance cathodes. Here, we address this challenge by unlocking the reversible four-electron Te0/Te4+ conversion in elemental Te, enabling the demonstration of superior Mg//Te dual-ion batteries. Specifically, the classic magnesium aluminum chloride complex (MACC) electrolyte is tailored by introducing Mg bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2), which initiates the Te0/Te4+ conversion with two distinct charge-storage steps. Te cathode undergoes Te/TeCl4 conversion involving Cl- as charge carriers, during which a tellurium subchloride phase is presented as an intermediate. Significantly, the Te cathode achieves a high specific capacity of 543 mAh gTe -1 and an outstanding energy density of 850 Wh kgTe -1, outperforming most of the previously reported cathodes. Our electrolyte analysis indicates that the addition of Mg(TFSI)2 reduces the overall ion-molecule interaction and mitigates the strength of ion-solvent aggregation within the MACC electrolyte, which implies the facilized Cl- dissociation from the electrolyte. Besides, Mg(TFSI)2 is verified as an essential buffer to mitigate the corrosion and passivation of Mg anodes caused by the consumption of the electrolyte MgCl2 in Mg//Te dual-ion cells. These findings provide crucial insights into the development of advanced Mg-based dual-ion batteries.

2.
Opt Express ; 32(2): 1325-1333, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297687

ABSTRACT

We demonstrate high-harmonic generation for the time-domain observation of the electric field (HHG-TOE) and use it to measure the waveform of ultrashort mid-infrared (MIR) laser pulses interacting with ZnO thin-films or WS2 monolayers. The working principle relies on perturbing HHG in solids with a weak replica of the pump pulse. We measure the duration of few-cycle pulses at 3200 nm, in reasonable agreement with the results of established pulse characterization techniques. Our method provides a straightforward approach to accurately characterize femtosecond laser pulses used for HHG experiments right at the point of interaction.

3.
Adv Mater ; 36(19): e2313621, 2024 May.
Article in English | MEDLINE | ID: mdl-38316395

ABSTRACT

Rechargeable aqueous zinc batteries are potential candidates for sustainable energy storage systems at a grid scale, owing to their high safety and low cost. However, the existing cathode chemistries exhibit restricted energy density, which hinders their extensive applications. Here, a tellurium redox-amphoteric conversion cathode chemistry is presented for aqueous zinc batteries, which delivers a specific capacity of 1223.9 mAh gTe -1 and a high energy density of 1028.0 Wh kgTe -1. A highly concentrated electrolyte (30 mol kg-1 ZnCl2) is revealed crucial for initiating the Te redox-amphoteric conversion as it suppresses the H2O reactivity and inhibits undesirable hydrolysis of the Te4+ product. By carrying out multiple operando/ex situ characterizations, the reversible six-electron Te2-/Te0/Te4+ conversion with TeCl4 is identified as the fully charged product and ZnTe as the fully discharged product. This finding not only enriches the conversion-type battery chemistries but also establishes a critical step in exploring redox-amphoteric materials for aqueous zinc batteries and beyond.

4.
ChemSusChem ; 17(7): e202301170, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38062976

ABSTRACT

Due to the drastic required thermodynamical requirements, a photoelectrode material that can function as both a photocathode and a photoanode remains elusive. In this work, we demonstrate for the first time that, under simulated solar light and without co-catalysts, donor-acceptor conjugated acetylenic polymers (CAPs) exhibit both impressive oxygen evolution (OER) and hydrogen evolution (HER) photocurrents in alkaline and neutral medium, respectively. In particular, poly(2,4,6-tris(4-ethynylphenyl)-1,3,5-triazine) (pTET) provides a benchmark OER photocurrent density of ~200 µA cm-2 at 1.23 V vs. reversible hydrogen electrode (RHE) at pH 13 and a remarkable HER photocurrent density of ~190 µA cm-2 at 0.3 V vs. RHE at pH 6.8. By combining theoretical investigations and electrochemical-operando Resonance Raman spectroscopy, we show that the OER proceeds with two different mechanisms, with the electron-depleted triple bonds acting as single-site OER in combination with the C4-C5 atoms of the phenyl rings as dual sites. The HER, instead, occurs via an electron transfer from the tri-acetylenic linkages to the triazine rings, which act as the HER active sites. This work represents a novel application of organic-based materials and contributes to the development of high-performance photoelectrochemical catalysts for the solar fuels' generation.

5.
Nanoscale Adv ; 6(1): 92-101, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38125607

ABSTRACT

The exceptional electronic and photonic properties of the monolayers of transition metal dichalcogenides including the spin-orbit splitting of the valence and conduction bands at the K points of the Brillouin zone make them promising for novel applications in electronics, photonics and optoelectronics. Scalable growth of these materials and understanding of their interaction with the substrate is crucial for these applications. Here we report the growth of MoS2 and MoSe2 monolayers on Au(111) by chemical vapor deposition at ambient pressure as well as the analysis of their structural and electronic properties down to the atomic scale. To this aim, we apply ultrahigh vacuum surface sensitive techniques including scanning tunneling microscopy and spectroscopy, low-energy electron diffraction, X-ray and angle-resolved ultraviolet photoelectron spectroscopy in combination with Raman spectroscopy at ambient conditions. We demonstrate the growth of high-quality epitaxial single crystalline MoS2 and MoSe2 monolayers on Au(111) and show the impact of annealing on the monolayer/substrate interaction. Thus, as-grown and moderately annealed (<100 °C) MoSe2 monolayers are decoupled from the substrate by excess Se atoms, whereas annealing at higher temperatures (>250 °C) results in their strong coupling with the substrate caused by desorption of the excess Se. The MoS2 monolayers are strongly coupled to the substrate and the interaction remains almost unchanged even after annealing up to 450 °C.

6.
Small Methods ; : e2301451, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38161249

ABSTRACT

The development and use of interface materials are essential to the continued advancement of organic solar cells (OSCs) performance. Self-assembled monolayer (SAM) materials have drawn attention because of their simple structure and affordable price. Due to their unique properties, they may be used in inverted devices as a modification layer for modifying ZnO or as a hole transport layer (HTL) in place of typical poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) in conventional devices. In this work, zinc oxide (ZnO) is modified using five structurally similar SAM materials. This resulted in a smoother surface, a decrease in work function, a suppression of charge recombination, and an increase in device efficiency and photostability. In addition, they can introduced asfor hole extraction layer between the active layer and MoO3 , enabling the use of the same material at several functional layers in the same device. Through systematic orthogonal evaluation, it is shown that some SAM/active layer/SAM combinations still offered device efficiencies comparable to ZnO/SAM, but with improved device' photostability. This study may provide recommendations for future SAM material's design and development as well as a strategy for boosting device performance by using the same material across both sides of the photoactive layer in OSCs.

7.
Nanoscale ; 15(47): 19268-19281, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37990869

ABSTRACT

Ultrafine metal nanoparticles (NPs) hold promise for applications in many fields, including catalysis. However, ultrasmall NPs are typically prone to aggregation, which often leads to performance losses, such as severe deactivation in catalysis. Conventional stabilization strategies (e.g., immobilization, embedding, or surface modification by capping agents) are typically only partly effective and often lead to loss of catalytic activity. Herein, a novel type of stabilizers based on water-soluble ionic (K+ and Na+ containing) polymeric carbon nitride (i.e., K,Na-poly(heptazine imide) = K,Na-PHI) is reported that enables effective stabilization of highly catalytically active ultrafine (size of ∼2-3 nm) gold NPs. Experimental and theoretical comparative studies using different structural units of K,Na-PHI (i.e., cyanurate, melonate, cyamelurate) indicate that the presence of functionalized heptazine moieties is crucial for the synthesis and stabilization of small Au NPs. The K,Na-PHI-stabilized Au NPs exhibit remarkable dispersibility and outstanding stability even in solutions of high ionic strength, which is ascribed to more effective charge delocalization in the large heptazine units, resulting in more effective electrostatic stabilization of Au NPs. The outstanding catalytic performance of Au NPs stabilized by K,Na-PHI is demonstrated using the selective reduction of 4-nitrophenol to 4-aminophenol by NaBH4 as a model reaction, in which they outperform even the benchmark "naked" Au NPs electrostatically stabilized by excess NaBH4. This work thus establishes ionic carbon nitrides (PHI) as alternative capping agents enabling effective stabilization without compromising surface catalysis, and opens up a route for further developments in utilizing PHI-based stabilizers for the synthesis of high-performance nanocatalysts.

8.
Nat Commun ; 14(1): 5881, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735478

ABSTRACT

Being able to control the neutral excitonic flux is a mandatory step for the development of future room-temperature two-dimensional excitonic devices. Semiconducting Monolayer Transition Metal Dichalcogenides (TMD-ML) with extremely robust and mobile excitons are highly attractive in this regard. However, generating an efficient and controlled exciton transport over long distances is a very challenging task. Here we demonstrate that an atomically sharp TMD-ML lateral heterostructure (MoSe2-WSe2) transforms the isotropic exciton diffusion into a unidirectional excitonic flow through the junction. Using tip-enhanced photoluminescence spectroscopy (TEPL) and a modified exciton transfer model, we show a discontinuity of the exciton density distribution on each side of the interface. We introduce the concept of exciton Kapitza resistance, by analogy with the interfacial thermal resistance referred to as Kapitza resistance. By comparing different heterostructures with or without top hexagonal boron nitride (hBN) layer, we deduce that the transport properties can be controlled, over distances far greater than the junction width, by the exciton density through near-field engineering and/or laser power density. This work provides a new approach for controlling the neutral exciton flow, which is key toward the conception of excitonic devices.

9.
ACS Appl Mater Interfaces ; 15(38): 45146-45157, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37713523

ABSTRACT

Organic solar cells (OSCs) have been a popular topic of research for a long time. As a well-known electron transport layer (ETL) material for inverted device architecture, sol-gel-derived zinc oxide (ZnO) displays certain defective surfaces that cause excessive charge recombination and lower device performance. While ultraviolet (UV)-light soaking is sometimes necessary for the ZnO layer to function properly, the latter can also cause the photodegradation of conjugated organic semiconductors. The photostability of OSCs has always been a hot research topic, as the radiation of UV light may cause changes in the material's properties, and that, in turn, may cause rapid attenuation of the devices. Herein, ZnO is modified by inserting the commonly used sunscreen ingredient benzophenone-3 (BP-3) between the photoactive layer, consisting of a PM6:Y6 blend, and ZnO to reduce the impact of UV radiation on the photosensitive layer. The addition of BP-3 successfully enhances the photovoltaic parameters, and a remarkable open-circuit voltage (Voc) value of 0.887 V is obtained for PM6:Y6-based inverted solar cells, corresponding to a Voc loss as small as 0.547 V. Finally, the application of this strategy increases the device's power conversion efficiency from 12.44 to 13.71% and provides improved UV stability.

10.
Nanomaterials (Basel) ; 13(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37764527

ABSTRACT

Herein, we present a new heterogeneous catalyst active toward glucose to formic acid methyl ester oxidation. The catalyst was fabricated via electrostatic immobilization of the inorganic polyoxometalate HPA-5 catalyst H8[PMo7V5O40] onto the pore surface of amphiphilic block copolymer membranes prepared via non-solvent-induced phase separation (NIPS). The catalyst immobilization was achieved via wet impregnation due to strong coulombic interactions between protonated tertiary amino groups of the polar poly(2-(dimethylamino)ethyl methacrylate) block and the anionic catalyst. Overall, three sets of five consecutive catalytic cycles were performed in an autoclave under 90 °Ð¡ and 11.5 bar air pressure in methanol, and the corresponding yields of formic acid methyl ester were quantified via head-space gas chromatography. The obtained results demonstrate that the membrane maintains its catalytic activity over multiple cycles, resulting in high to moderate yields in comparison to a homogeneous catalytic system. Nevertheless, presumably due to leaching, the catalytic activity declines over five catalytic cycles. The morphological and chemical changes of the membrane during the prolonged catalysis under harsh conditions were examined in detail using different analytic tools, and it seems that the underlying block copolymer is not affected by the catalytic process.

11.
J Am Chem Soc ; 145(32): 17975-17986, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37532522

ABSTRACT

The chemistry and physics of macropolyhedral B18H22 clusters have attracted significant attention due to the interesting photophysical properties of anti-B18H22 (blue emission, laser properties) and related potential applications. We have focused our attention on the "forgotten" syn-B18H22 isomer, which has received very little attention since its discovery compared to its anti-B18H22 isomer, presumably because numerous studies have reported this isomer as nonluminescent. In our study, we show that in crystalline form, syn-B18H22 exhibits blue fluorescence and becomes phosphorescent when substituted at various positions on the cluster, associated with peculiar microstructural-dependent effects. This work is a combined theoretical and experimental investigation that includes the synthesis, separation, structural characterization, and first elucidation of the photophysical properties of three different monothiol-substituted cluster isomers, [1-HS-syn-B18H21] 1, [3-HS-syn-B18H21] 3, and [4-HS-syn-B18H21] 4, of which isomers 1 and 4 have been proved to exist in two different polymorphic forms. All of these newly substituted macropolyhedral cluster derivatives (1, 3, and 4) have been fully characterized by NMR spectroscopy, mass spectrometry, single-crystal X-ray diffraction, IR spectroscopy, and luminescence spectroscopy. This study also presents the first report on the mechanochromic shift in the luminescence of a borane cluster and generally enriches the area of rather rare boron-based luminescent materials. In addition, we present the first results proving that they are useful constituents of carbon-free self-assembled monolayers.

12.
Small Methods ; 7(10): e2300288, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37423957

ABSTRACT

A critical point drying (CPD) technique is reported with supercritical CO2 as a cleaning step for graphene field-effect transistors (GFETs) microfabricated on oxidized Si wafers, which results in an increase of the field-effect mobility and a decrease of the impurity doping. It is shown that the polymeric residues remaining on graphene after the transfer process and device microfabrication are significantly reduced after the CPD treatment. Moreover, the CPD effectively removes ambient adsorbates such as water therewith reducing the undesirable p-type doping of the GFETs. It is proposed that CPD of electronic, optoelectronic, and photonic devices based on 2D materials as a promising technique to recover their intrinsic properties after the microfabrication in a cleanroom and after storage at ambient conditions.

13.
Chemphyschem ; 24(18): e202300203, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37415441

ABSTRACT

The effect of roughness and thickness of alumina layers, mimicking the passivation layer commonly used in dye-sensitized photoelectrodes, on the molecular adsorption of P1 dye, 4-(bi(4-(2,2-dicyano-vinyl)-thiophene-2-yl]-phenyl]-aminobenzoic acid) has been studied using surface-sensitive vibrational sum frequency generation(VSFG) spectroscopy. The VSFG spectra reveal the formation of poorly ordered dye layers on relatively rough surfaces where XPS measures a higher dye loading. Furthermore, these poorly ordered dye molecules are responsible for the generation of trapped electronic states as probed by successive photoluminescence (PL) measurements. Surface sensitive VSFG spectroscopy in combination with XPS and PL measurements provide complementary spectral information on ordering of the adsorbed dyes, their density on the surface and electronic states of the adsorbed monolayer which are prerequisite for improving our understanding of molecularly functionalized photoelectrodes and their further development.

14.
Small ; 19(44): e2303625, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37381623

ABSTRACT

Solid-state lithium metal batteries with garnet-type electrolyte provide several advantages over conventional lithium-ion batteries, especially for safety and energy density. However, a few grand challenges such as the propagation of Li dendrites, poor interfacial contact between the solid electrolyte and the electrodes, and formation of lithium carbonate during ambient exposure over the solid-state electrolyte prevent the viability of such batteries. Herein, an ultrathin sub-nanometer porous carbon nanomembrane (CNM) is employed on the surface of solid-state electrolyte (SSE) that increases the adhesion of SSE with electrodes, prevents lithium carbonate formation over the surface, regulates the flow of Li-ions, and blocks any electronic leakage. The sub-nanometer scale pores in CNM allow rapid permeation of Li-ions across the electrode-electrolyte interface without the presence of any liquid medium. Additionally, CNM suppresses the propagation of Li dendrites by over sevenfold up to a current density of 0.7 mA cm-2 and enables the cycling of all-solid-state batteries at low stack pressure of 2 MPa using LiFePO4 cathode and Li metal anode. The CNM provides chemical stability to the solid electrolyte for over 4 weeks of ambient exposure with less than a 4% increase in surface impurities.

15.
Angew Chem Int Ed Engl ; 62(28): e202303929, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37163208

ABSTRACT

Two-dimensional van der Waals heterostructures (2D vdWHs) have recently gained widespread attention because of their abundant and exotic properties, which open up many new possibilities for next-generation nanoelectronics. However, practical applications remain challenging due to the lack of high-throughput techniques for fabricating high-quality vdWHs. Here, we demonstrate a general electrochemical strategy to prepare solution-processable high-quality vdWHs, in which electrostatic forces drive the stacking of electrochemically exfoliated individual assemblies with intact structures and clean interfaces into vdWHs with strong interlayer interactions. Thanks to the excellent combination of strong light absorption, interfacial charge transfer, and decent charge transport properties in individual layers, thin-film photodetectors based on graphene/In2 Se3 vdWHs exhibit great promise for near-infrared (NIR) photodetection, owing to a high responsivity (267 mA W-1 ), fast rise (72 ms) and decay (426 ms) times under NIR illumination. This approach enables various hybrid systems, including graphene/In2 Se3 , graphene/MoS2 and graphene/MoSe2 vdWHs, providing a broad avenue for exploring emerging electronic, photonic, and exotic quantum phenomena.

16.
Nat Commun ; 14(1): 2438, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37117167

ABSTRACT

The existence of bound charge transfer (CT) excitons at the interface of monolayer lateral heterojunctions has been debated in literature, but contrary to the case of interlayer excitons in vertical heterostructure their observation still has to be confirmed. Here, we present a microscopic study investigating signatures of bound CT excitons in photoluminescence spectra at the interface of hBN-encapsulated lateral MoSe2-WSe2 heterostructures. Based on a fully microscopic and material-specific theory, we reveal the many-particle processes behind the formation of CT excitons and how they can be tuned via interface- and dielectric engineering. For junction widths smaller than the Coulomb-induced Bohr radius we predict the appearance of a low-energy CT exciton. The theoretical prediction is compared with experimental low-temperature photoluminescence measurements showing emission in the bound CT excitons energy range. We show that for hBN-encapsulated heterostructures, CT excitons exhibit small binding energies of just a few tens meV and at the same time large dipole moments, making them promising materials for optoelectronic applications (benefiting from an efficient exciton dissociation and fast dipole-driven exciton propagation). Our joint theory-experiment study presents a significant step towards a microscopic understanding of optical properties of technologically promising 2D lateral heterostructures.

17.
ACS Appl Mater Interfaces ; 15(15): 18889-18897, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37014708

ABSTRACT

CdSe quantum dots (QDs) combined with [FeFe] hydrogenase mimics as molecular catalytic reaction centers based on earth-abundant elements have demonstrated promising activity for photocatalytic hydrogen generation. Direct linking of the [FeFe] hydrogenase mimics to the QD surface is expected to establish a close contact between the [FeFe] hydrogenase mimics and the light-harvesting QDs, supporting the transfer and accumulation of several electrons needed to drive hydrogen evolution. In this work, we report on the functionalization of QDs immobilized in a thin-film architecture on a substrate with [FeFe] hydrogenase mimics by covalent linking via carboxylate groups as the anchoring functionality. The functionalization was monitored via UV/vis, photoluminescence, IR, and X-ray photoelectron spectroscopy and quantified via micro-X-ray fluorescence spectrometry. The activity of the functionalized thin film was demonstrated, and turn-over numbers in the range of 360-580 (short linkers) and 130-160 (long linkers) were achieved. This work presents a proof-of-concept study, showing the potential of thin-film architectures of immobilized QDs as a platform for light-driven hydrogen evolution without the need for intricate surface modifications to ensure colloidal stability in aqueous environments.

18.
Small ; 19(29): e2300282, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37026659

ABSTRACT

Molecular thin carbon nanomembranes (CNMs) synthesized by electron irradiation induced cross-linking of aromatic self-assembled monolayers (SAMs) are promising 2D materials for the next generation of filtration technologies. Their unique properties including ultimately low thickness of ≈1 nm, sub-nanometer porosity, mechanical and chemical stability are attractive for the development of innovative filters with low energy consumption, improved selectivity, and robustness. However, the permeation mechanisms through CNMs resulting in, e.g., an ≈1000 times higher fluxes of water in comparison to helium have not been yet understood. Here, a study of the permeation of He, Ne, D2 , CO2 , Ar, O2 and D2 O using mass spectrometry in the temperature range from room temperature to ≈120 °C is studied. As a model system, CNMs made from [1″,4',1',1]-terphenyl-4-thiol SAMs are investigated. It is found out that all studied gases experience an activation energy barrier upon the permeation which scales with their kinetic diameters. Moreover, their permeation rates are dependent on the adsorption on the nanomembrane surface. These findings enable to rationalize the permeation mechanisms and establish a model, which paves the way toward the rational design not only of CNMs but also of other organic and inorganic 2D materials for energy-efficient and highly selective filtration applications.

19.
Small ; 19(26): e2207263, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36949495

ABSTRACT

Experimental results on the charge-state-dependent sputtering of metallic gold nanoislands are presented. Irradiations with slow highly charged ions of metallic targets were previously considered to show no charge state dependent effects on ion-induced material modification, since these materials possess enough free electrons to dissipate the deposited potential energy before electron-phonon coupling can set in. By reducing the size of the target material down to the nanometer regime and thus enabling a geometric energy confinement, a possibility is demonstrated to erode metallic surfaces by charge state related effects in contrast to regular kinetic sputtering.

20.
Nanoscale ; 15(12): 5809-5815, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36857670

ABSTRACT

Stacked hetero-structures of two-dimensional materials allow for a design of interactions with corresponding electronic and mechanical properties. We report structure, work function, and frictional properties of 1 to 4 layers of MoS2 grown by chemical vapor deposition on epitaxial graphene on SiC(0001). Experiments were performed by atomic force microscopy in ultra-high vacuum. Friction is dominated by adhesion which is mediated by a deformation of the layers to adapt the shape of the tip apex. Friction decreases with increasing number of MoS2 layers as the bending rigidity leads to less deformation. The dependence of friction on applied load and bias voltage can be attributed to variations in the atomic potential corrugation of the interface, which is enhanced by both load and applied bias. Minimal friction is obtained when work function differences are compensated.

SELECTION OF CITATIONS
SEARCH DETAIL
...