Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Science ; 382(6670): 547-553, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37917685

ABSTRACT

In nature, nonheme iron enzymes use dioxygen to generate high-spin iron(IV)=O species for a variety of oxygenation reactions. Although synthetic chemists have long sought to mimic this reactivity, the enzyme-like activation of O2 to form high-spin iron(IV) = O species remains an unrealized goal. Here, we report a metal-organic framework featuring iron(II) sites with a local structure similar to that in α-ketoglutarate-dependent dioxygenases. The framework reacts with O2 at low temperatures to form high-spin iron(IV) = O species that are characterized using in situ diffuse reflectance infrared Fourier transform, in situ and variable-field Mössbauer, Fe Kß x-ray emission, and nuclear resonance vibrational spectroscopies. In the presence of O2, the framework is competent for catalytic oxygenation of cyclohexane and the stoichiometric conversion of ethane to ethanol.

2.
Nat Commun ; 14(1): 1468, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36928184

ABSTRACT

The layered square-planar nickelates, Ndn+1NinO2n+2, are an appealing system to tune the electronic properties of square-planar nickelates via dimensionality; indeed, superconductivity was recently observed in Nd6Ni5O12 thin films. Here, we investigate the role of epitaxial strain in the competing requirements for the synthesis of the n = 3 Ruddlesden-Popper compound, Nd4Ni3O10, and subsequent reduction to the square-planar phase, Nd4Ni3O8. We synthesize our highest quality Nd4Ni3O10 films under compressive strain on LaAlO3 (001), while Nd4Ni3O10 on NdGaO3 (110) exhibits tensile strain-induced rock salt faults but retains bulk-like transport properties. A high density of extended defects forms in Nd4Ni3O10 on SrTiO3 (001). Films reduced on LaAlO3 become insulating and form compressive strain-induced c-axis canting defects, while Nd4Ni3O8 films on NdGaO3 are metallic. This work provides a pathway to the synthesis of Ndn+1NinO2n+2 thin films and sets limits on the ability to strain engineer these compounds via epitaxy.

3.
Nature ; 613(7943): 287-291, 2023 01.
Article in English | MEDLINE | ID: mdl-36631647

ABSTRACT

Ammonia is a critical chemical in agriculture and industry that is produced on a massive scale via the Haber-Bosch process1. The environmental impact of this process, which uses methane as a fuel and feedstock for hydrogen, has motivated the need for more sustainable ammonia production2-5. However, many strategies that use renewable hydrogen are not compatible with existing methods for ammonia separation6-9. Given their high surface areas and structural and chemical versatility, metal-organic frameworks (MOFs) hold promise for ammonia separations, but most MOFs bind ammonia irreversibly or degrade on exposure to this corrosive gas10,11. Here we report a tunable three-dimensional framework that reversibly binds ammonia by cooperative insertion into its metal-carboxylate bonds to form a dense, one-dimensional coordination polymer. This unusual adsorption mechanism provides considerable intrinsic thermal management12, and, at high pressures and temperatures, cooperative ammonia uptake gives rise to large working capacities. The threshold pressure for ammonia adsorption can further be tuned by almost five orders of magnitude through simple synthetic modifications, pointing to a broader strategy for the development of energy-efficient ammonia adsorbents.

4.
J Am Chem Soc ; 144(2): 733-739, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35000393

ABSTRACT

Here, we quantify the effect of an external magnetic field (ß) on the oxygen evolution reaction (OER) for a cobalt oxide|fluorine-doped tin oxide coated glass (CoOx|FTO) anode. A bespoke apparatus enables us to precisely determine the relationship between magnetic flux density (ß) and OER activity at the surface of a CoOx|FTO anode. The apparatus includes a strong NdFeB magnet (ßmax = 450 ± 1 mT) capable of producing a magnetic field of 371 ± 1 mT at the surface of the anode. The distance between the magnet and the anode surface is controlled by a linear actuator, enabling submillimeter distance positioning of the magnet relative to the anode surface. We couple this apparatus with a finite element analysis magnetic model that was validated by Hall probe measurements to determine the value of ß at the anode surface. At the largest tested magnetic field strength of ß = 371 ± 1 mT, a 4.7% increase in current at 1.5 V vs the normal hydrogen electrode (NHE) and a change in the Tafel slope of 14.5 mV/dec were observed. We demonstrate through a series of OER measurements at sequential values of ß that the enhancement consists of two distinct regions. The possible use of this effect to improve the energy efficiency of commercial water electrolyzers is discussed, and major challenges pertaining to the accurate measurement of the phenomenon are demonstrated.

5.
6.
Chem Sci ; 12(43): 14590-14598, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34881011

ABSTRACT

Nitric oxide (NO) is an important signaling molecule in biological systems, and as such, the ability of porous materials to reversibly adsorb NO is of interest for potential medical applications. Although certain metal-organic frameworks are known to bind NO reversibly at coordinatively unsaturated metal sites, the influence of the metal coordination environment on NO adsorption has not been studied in detail. Here, we examine NO adsorption in the frameworks Co2Cl2(bbta) (H2bbta = 1H,5H-benzo(1,2-d:4,5-d')bistriazole) and Co2(OH)2(bbta) using gas adsorption, infrared spectroscopy, powder X-ray diffraction, and magnetometry. At room temperature, NO adsorbs reversibly in Co2Cl2(bbta) without electron transfer, with low temperature data supporting spin-crossover of the NO-bound cobalt(ii) centers of the material. In contrast, adsorption of low pressures of NO in Co2(OH)2(bbta) is accompanied by charge transfer from the cobalt(ii) centers to form a cobalt(iii)-NO- adduct, as supported by diffraction and infrared spectroscopy data. At higher pressures of NO, characterization data indicate additional uptake of the gas and disproportionation of the bound NO to form a cobalt(iii)-nitro (NO2 -) species and N2O gas, a transformation that appears to be facilitated by secondary sphere hydrogen bonding interactions between the bound NO2 - and framework hydroxo groups. These results provide a rare example of reductive NO binding in a cobalt-based metal-organic framework, and they demonstrate that NO uptake can be tuned by changing the primary and secondary coordination environment of the framework metal centers.

7.
Inorg Chem ; 60(21): 16103-16110, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34632759

ABSTRACT

The metal-organic framework Zr6O4(OH)4(bpydc)6 (bpydc2- = 2,2'-bipyridine-5,5'-dicarboxylate) is used to template the growth of a cluster fragment of the two-dimensional solid MnBr2, which was predicted to exhibit spin frustration. Single-crystal and powder X-ray diffraction analyses reveal a cluster with 19 metal ions arranged in a triangular lattice motif. Static magnetic susceptibility measurements indicate antiferromagnetic coupling between the high-spin (S = 5/2) MnII centers, and dynamic magnetic susceptibility data suggest population of low-lying excited states, consistent with magnetic frustration. Density functional theory calculations are used to determine the energies for a subset of thousands of magnetic configurations available to the cluster. The Yamaguchi generalized spin-projection method is then employed to construct a model for magnetic coupling interactions within the cluster, enabling facile determination of the energy for all possible magnetic configurations. The confined cluster is predicted to possess a doubly degenerate, highly geometrically frustrated ground state with a total spin of STotal = 5/2.

8.
J Am Chem Soc ; 142(5): 2653-2664, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31940192

ABSTRACT

Two iron-semiquinoid framework materials, (H2NMe2)2Fe2(Cl2 dhbq)3 (1) and (H2NMe2)4Fe3(Cl2 dhbq)3(SO4)2 (Cl2 dhbqn- = deprotonated 2,5-dichloro-3,6-dihydroxybenzoquinone) (2-SO4), are shown to possess electrochemical capacities of up to 195 mAh/g. Employing a variety of spectroscopic methods, we demonstrate that these exceptional capacities arise from a combination of metal- and ligand-centered redox processes, a result supported by electronic structure calculations. Importantly, similar capacities are not observed in isostructural frameworks containing redox-inactive metal ions, highlighting the importance of energy alignment between metal and ligand orbitals to achieve high capacities at high potentials in these materials. Prototype lithium-ion devices constructed using 1 as a cathode demonstrate reasonable capacity retention over 50 cycles, with a peak specific energy of 533 Wh/kg, representing the highest value yet reported for a metal-organic framework. In contrast, the capacities of devices using 2-SO4 as a cathode rapidly diminish over several cycles due to the low electronic conductivity of the material, illustrating the nonviability of insulating frameworks as cathode materials. Finally, 1 is further demonstrated to access similar capacities as a sodium-ion or potassium-ion cathode. Together, these results demonstrate the feasibility and versatility of metal-organic frameworks as energy storage materials for a wide range of battery chemistries.

9.
Nature ; 577(7788): 64-68, 2020 01.
Article in English | MEDLINE | ID: mdl-31739311

ABSTRACT

The size-dependent and shape-dependent characteristics that distinguish nanoscale materials from bulk solids arise from constraining the dimensionality of an inorganic structure1-3. As a consequence, many studies have focused on rationally shaping these materials to influence and enhance their optical, electronic, magnetic and catalytic properties4-6. Although a select number of stable clusters can typically be synthesized within the nanoscale regime for a specific composition, isolating clusters of a predetermined size and shape remains a challenge, especially for those derived from two-dimensional materials. Here we realize a multidentate coordination environment in a metal-organic framework to stabilize discrete inorganic clusters within a porous crystalline support. We show confined growth of atomically defined nickel(II) bromide, nickel(II) chloride, cobalt(II) chloride and iron(II) chloride sheets through the peripheral coordination of six chelating bipyridine linkers. Notably, confinement within the framework defines the structure and composition of these sheets and facilitates their precise characterization by crystallography. Each metal(II) halide sheet represents a fragment excised from a single layer of the bulk solid structure, and structures obtained at different precursor loadings enable observation of successive stages of sheet assembly. Finally, the isolated sheets exhibit magnetic behaviours distinct from those of the bulk metal halides, including the isolation of ferromagnetically coupled large-spin ground states through the elimination of long-range, interlayer magnetic ordering. Overall, these results demonstrate that the pore environment of a metal-organic framework can be designed to afford precise control over the size, structure and spatial arrangement of inorganic clusters.

10.
J Am Chem Soc ; 140(46): 15924-15933, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30403480

ABSTRACT

Metal-organic frameworks that display step-shaped adsorption profiles arising from discrete pressure-induced phase changes are promising materials for applications in both high-capacity gas storage and energy-efficient gas separations. The thorough investigation of such materials through chemical diversification, gas adsorption measurements, and in situ structural characterization is therefore crucial for broadening their utility. We examine a series of isoreticular, flexible zeolitic imidazolate frameworks (ZIFs) of the type M(bim)2 (SOD; M = Zn (ZIF-7), Co (ZIF-9), Cd (CdIF-13); bim- = benzimidazolate), and elucidate the effects of metal substitution on the pressure-responsive phase changes and the resulting CO2 and CH4 step positions, pre-step uptakes, and step capacities. Using ZIF-7 as a benchmark, we reexamine the poorly understood structural transition responsible for its adsorption steps and, through high-pressure adsorption measurements, verify that it displays a step in its CH4 adsorption isotherms. The ZIF-9 material is shown to undergo an analogous phase change, yielding adsorption steps for CO2 and CH4 with similar profiles and capacities to ZIF-7, but with shifted threshold pressures. Further, the Cd2+ analogue CdIF-13 is reported here for the first time, and shown to display adsorption behavior distinct from both ZIF-7 and ZIF-9, with negligible pre-step adsorption, a ∼50% increase in CO2 and CH4 capacity, and dramatically higher threshold adsorption pressures. Remarkably, a single-crystal-to-single-crystal phase change to a pore-gated phase is also achieved with CdIF-13, providing insight into the phase change that yields step-shaped adsorption in these flexible ZIFs. Finally, we show that the endothermic phase change of these frameworks provides intrinsic heat management during gas adsorption.

11.
Chem Sci ; 7(4): 2701-2705, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-28660043

ABSTRACT

Single-molecule conductance measurements have focused primarily on organic molecular systems. Here, we carry out scanning tunneling microscope-based break-junction measurements on a series of metal chalcogenide Co6Se8 clusters capped with conducting ligands of varying lengths. We compare these measurements with those of individual free ligands and find that the conductance of these clusters and the free ligands have different decay constants with increasing ligand length. We also show, through measurements in two different solvents, 1-bromonaphthalene and 1,2,4-trichlorobenzene, that the conductance decay of the clusters depends on the solvent environment. We discuss several mechanisms to explain our observations.

12.
J Am Chem Soc ; 136(48): 16926-31, 2014 Dec 03.
Article in English | MEDLINE | ID: mdl-25379957

ABSTRACT

In order to realize significant benefits from the assembly of solid-state materials from molecular cluster superatomic building blocks, several criteria must be met. Reproducible syntheses must reliably produce macroscopic amounts of pure material; the cluster-assembled solids must show properties that are more than simply averages of those of the constituent subunits; and rational changes to the chemical structures of the subunits must result in predictable changes in the collective properties of the solid. In this report we show that we can meet these requirements. Using a combination of magnetometry and muon spin relaxation measurements, we demonstrate that crystallographically defined superatomic solids assembled from molecular nickel telluride clusters and fullerenes undergo a ferromagnetic phase transition at low temperatures. Moreover, we show that when we modify the constituent superatoms, the cooperative magnetic properties change in predictable ways.

13.
J Am Chem Soc ; 136(45): 15873-6, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25330140

ABSTRACT

Hierarchical solids created from the binary assembly of cobalt chalcogenide and iron oxide molecular clusters are reported. Six different molecular clusters based on the octahedral Co6E8 (E = Se or Te) and the expanded cubane Fe8O4 units are used as superatomic building blocks to construct these crystals. The formation of the solid is driven by the transfer of charge between complementary electron-donating and electron-accepting clusters in solution that crystallize as binary ionic compounds. The hierarchical structures are investigated by single-crystal X-ray diffraction, providing atomic and superatomic resolution. We report two different superstructures: a superatomic relative of the CsCl lattice type and an unusual packing arrangement based on the double-hexagonal close-packed lattice. Within these superstructures, we demonstrate various compositions and orientations of the clusters.

SELECTION OF CITATIONS
SEARCH DETAIL
...