Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Microorganisms ; 9(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34576704

ABSTRACT

Recalcitrant chronic infections of implanted medical devices are often linked to the presence of biofilms. The prevention and treatment of medical device-associated infections is a major source of antibiotic use and driver of antimicrobial resistance globally. Lowering the incidence of infection in patients that receive implanted medical devices could therefore significantly improve antibiotic stewardship and reduce patient morbidity. Here we determined if modifying the design of an implantable medical device to reduce bacterial attachment, impacted the incidence of device-associated infections in clinical practice. Since the 1980s cochlear implants have provided long-term treatment of sensorineural hearing deficiency in hundreds of thousands of patients world-wide. Nonetheless, a relatively small number of devices are surgically explanted each year due to unresolvable infections. Features associated with the accumulation of bacteria on the Cochlear™ Nucleus® CI24RE™ model of cochlear implant devices were identified using both in vitro bacterial attachment assays and examination of explanted devices. Macro-scale design modifications that reduced bacterial attachment in vitro were incorporated into the design of the CI500™ and Profile™ series of Nucleus implant. Analyses of mandatory post-market vigilance data of 198,757 CI24RE and 123,084 CI500/Profile series implantation surgeries revealed that these design modifications correlated with significantly reduced infection rates. This study demonstrates that a design-centric approach aimed at mitigating bacterial attachment was a simple, and effective means of reducing infections associated with Cochlear Nucleus devices. This approach is likely to be applicable to improving the designs of other implantable medical devices to reduce device-associated infections.

2.
Life Sci Alliance ; 4(7)2021 07.
Article in English | MEDLINE | ID: mdl-34108265

ABSTRACT

Peroxisomes are recognized as significant platforms for the activation of antiviral innate immunity where stimulation of the key adapter molecule mitochondrial antiviral signaling protein (MAVS) within the RIG-I like receptor (RLR) pathway culminates in the up-regulation of hundreds of ISGs, some of which drive augmentation of multiple innate sensing pathways. However, whether ISGs can augment peroxisome-driven RLR signaling is currently unknown. Using a proteomics-based screening approach, we identified Pex19 as a binding partner of the ISG viperin. Viperin colocalized with numerous peroxisomal proteins and its interaction with Pex19 was in close association with lipid droplets, another emerging innate signaling platform. Augmentation of the RLR pathway by viperin was lost when Pex19 expression was reduced. Expression of organelle-specific MAVS demonstrated that viperin requires both mitochondria and peroxisome MAVS for optimal induction of IFN-ß. These results suggest that viperin is required to enhance the antiviral cellular response with a possible role to position the peroxisome at the mitochondrial/MAM MAVS signaling synapse, furthering our understanding of the importance of multiple organelles driving the innate immune response against viral infection.


Subject(s)
Membrane Proteins/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Peroxisomes/metabolism , Adaptor Proteins, Signal Transducing/genetics , Antiviral Agents/metabolism , Cell Line , Cell Line, Tumor , Gene Expression/genetics , Gene Expression Regulation/genetics , Humans , Immunity, Innate/immunology , Immunity, Innate/physiology , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Membrane Proteins/genetics , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/physiology , Signal Transduction/genetics
3.
Microbiology (Reading) ; 167(2)2021 02.
Article in English | MEDLINE | ID: mdl-33400641

ABSTRACT

Bacterial biofilms are composed of aggregates of cells encased within a matrix of extracellular polymeric substances (EPS). One key EPS component is extracellular DNA (eDNA), which acts as a 'glue', facilitating cell-cell and cell-substratum interactions. We have previously demonstrated that eDNA is produced in Pseudomonas aeruginosa biofilms via explosive cell lysis. This phenomenon involves a subset of the bacterial population explosively lysing, due to peptidoglycan degradation by the endolysin Lys. Here we demonstrate that in P. aeruginosa three holins, AlpB, CidA and Hol, are involved in Lys-mediated eDNA release within both submerged (hydrated) and interstitial (actively expanding) biofilms, albeit to different extents, depending upon the type of biofilm and the stage of biofilm development. We also demonstrate that eDNA release events determine the sites at which cells begin to cluster to initiate microcolony formation during the early stages of submerged biofilm development. Furthermore, our results show that sustained release of eDNA is required for cell cluster consolidation and subsequent microcolony development in submerged biofilms. Overall, this study adds to our understanding of how eDNA release is controlled temporally and spatially within P. aeruginosa biofilms.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , DNA, Bacterial/metabolism , Pseudomonas aeruginosa/physiology , Bacterial Proteins/genetics , Bacteriolysis , Endopeptidases/genetics , Endopeptidases/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Mutation , Pseudomonas aeruginosa/metabolism
4.
Microbiology (Reading) ; 166(10): 995-1003, 2020 10.
Article in English | MEDLINE | ID: mdl-32749953

ABSTRACT

Natural transformation is a mechanism that enables competent bacteria to acquire naked, exogenous DNA from the environment. It is a key process that facilitates the dissemination of antibiotic resistance and virulence determinants throughout bacterial populations. Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that produces large quantities of extracellular DNA (eDNA) that is required for biofilm formation. P. aeruginosa has a remarkable level of genome plasticity and diversity that suggests a high degree of horizontal gene transfer and recombination but is thought to be incapable of natural transformation. Here we show that P. aeruginosa possesses homologues of all proteins known to be involved in natural transformation in other bacterial species. We found that P. aeruginosa in biofilms is competent for natural transformation of both genomic and plasmid DNA. Furthermore, we demonstrate that type-IV pili (T4P) facilitate but are not absolutely essential for natural transformation in P. aeruginosa.


Subject(s)
Biofilms , Pseudomonas aeruginosa/physiology , Transformation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , DNA/metabolism , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Pseudomonas aeruginosa/genetics
5.
Microbiology (Reading) ; 166(7): 669-678, 2020 07.
Article in English | MEDLINE | ID: mdl-32478653

ABSTRACT

Twitching motility-mediated biofilm expansion occurs via coordinated, multi-cellular collective behaviour to allow bacteria to actively expand across surfaces. Type-IV pili (T4P) are cell-associated virulence factors which mediate twitching motility via rounds of extension, surface attachment and retraction. The Chp chemosensory system is thought to respond to environmental signals to regulate the biogenesis, assembly and twitching motility function of T4P. In other well characterised chemosensory systems, methyl-accepting chemotaxis proteins (MCPs) feed environmental signals through a CheW adapter protein to the histidine kinase CheA to modulate motility. The Pseudomonas aeruginosa Chp system has an MCP PilJ and two CheW adapter proteins, PilI and ChpC, that likely interact with the histidine kinase ChpA to feed environmental signals into the system. In the current study we show that ChpC is involved in the response to host-derived signals serum albumin, mucin and oligopeptides. We demonstrate that these signals stimulate an increase in twitching motility, as well as in levels of 3'-5'-cyclic adenosine monophosphate (cAMP) and surface-assembled T4P. Interestingly, our data shows that changes in cAMP and surface piliation levels are independent of ChpC but that the twitching motility response to these environmental signals requires ChpC. Furthermore, we show that protease activity is required for the twitching motility response of P. aeruginosa to environmental signals. Based upon our data we propose a model whereby ChpC feeds these environmental signals into the Chp system, potentially via PilJ or another MCP, to control twitching motility. PilJ and PilI then modulate T4P surface levels to allow the cell to continue to undergo twitching motility. Our study is the first to link environmental signals to the Chp chemosensory system and refines our understanding of how this system controls twitching motility-mediated biofilm expansion in P. aeruginosa.


Subject(s)
Biofilms/growth & development , Cyclic AMP/metabolism , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Bacterial Proteins/metabolism , DNA, Bacterial , Host-Pathogen Interactions , Movement/drug effects , Mucins/pharmacology , Oligopeptides/pharmacology , Pseudomonas Infections/microbiology , Sequence Deletion , Serum Albumin/pharmacology , Signal Transduction , Virulence Factors/metabolism
6.
BMC Mol Cell Biol ; 21(1): 24, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32245408

ABSTRACT

BACKGROUND: Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in many cancer cells, where it is associated with detrimental patient outcomes. It contains phosphorylated tyrosines which evolutionarily preceded deuterostome gastrulation and tissue differentiation mechanisms. RESULTS: We demonstrate that manipulating PGRMC1 phosphorylation status in MIA PaCa-2 (MP) cells imposes broad pleiotropic effects. Relative to parental cells over-expressing hemagglutinin-tagged wild-type (WT) PGRMC1-HA, cells expressing a PGRMC1-HA-S57A/S181A double mutant (DM) exhibited reduced levels of proteins involved in energy metabolism and mitochondrial function, and altered glucose metabolism suggesting modulation of the Warburg effect. This was associated with increased PI3K/AKT activity, altered cell shape, actin cytoskeleton, motility, and mitochondrial properties. An S57A/Y180F/S181A triple mutant (TM) indicated the involvement of Y180 in PI3K/AKT activation. Mutation of Y180F strongly attenuated subcutaneous xenograft tumor growth in NOD-SCID gamma mice. Elsewhere we demonstrate altered metabolism, mutation incidence, and epigenetic status in these cells. CONCLUSIONS: Altogether, these results indicate that mutational manipulation of PGRMC1 phosphorylation status exerts broad pleiotropic effects relevant to cancer and other cell biology.


Subject(s)
Phosphorylation , Receptors, Progesterone , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Shape , Energy Metabolism , Glycolysis , Humans , Membrane Proteins/biosynthesis , Membrane Proteins/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Mitochondria/metabolism , Neoplasms , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Progesterone/biosynthesis , Receptors, Progesterone/metabolism
7.
Sci Rep ; 9(1): 18160, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31796774

ABSTRACT

Chronic wound treatment is becoming increasingly difficult and costly, further exacerbated when wounds become infected. Bacterial biofilms cause most chronic wound infections and are notoriously resistant to antibiotic treatments. The need for new approaches to combat polymicrobial biofilms in chronic wounds combined with the growing antimicrobial resistance crisis means that honey is being revisited as a treatment option due to its broad-spectrum antimicrobial activity and low propensity for bacterial resistance. We assessed four well-characterised New Zealand honeys, quantified for their key antibacterial components, methylglyoxal, hydrogen peroxide and sugar, for their capacity to prevent and eradicate biofilms produced by the common wound pathogen Pseudomonas aeruginosa. We demonstrate that: (1) honey used at substantially lower concentrations compared to those found in honey-based wound dressings inhibited P. aeruginosa biofilm formation and significantly reduced established biofilms; (2) the anti-biofilm effect of honey was largely driven by its sugar component; (3) cells recovered from biofilms treated with sub-inhibitory honey concentrations had slightly increased tolerance to honey; and (4) honey used at clinically obtainable concentrations completely eradicated established P. aeruginosa biofilms. These results, together with their broad antimicrobial spectrum, demonstrate that manuka honey-based wound dressings are a promising treatment for infected chronic wounds, including those with P. aeruginosa biofilms.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Apitherapy/methods , Bandages , Honey , Microbial Sensitivity Tests/methods , New Zealand , Wound Infection/drug therapy
8.
Int J Syst Evol Microbiol ; 69(3): 645-651, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30676309

ABSTRACT

Pandoraea species have been isolated from diverse environmental samples and are emerging important respiratory pathogens, particularly in people with cystic fibrosis (CF). In the present study, two bacterial isolates initially recovered from consecutive sputum samples collected from a CF patient and identified as Pandoraea pnomenusa underwent a polyphasic taxonomic analysis. The isolates were found to be Gram-negative, facultative anaerobic motile bacilli and subsequently designated as strains 6399T (=LMG29626T=DSM103228T) and 7641 (=LMG29627=DSM103229), respectively. Phylogenetic analysis based on 16S rRNA and gyrB gene sequences revealed that 6399T and 7641 formed a distinct phylogenetic lineage within the genus Pandoraea. Genome sequence comparison analysis indicated that strains 6399T and 7641 are clonal and share 100 % similarity, however, similarity to other type strains (ANIb 73.2-88.8 %, ANIm 83.5-89.9 % and OrthoANI 83.2-89.3 %) indicates that 6399T and 7641 do not belong to any of the reported type species. The major cellular fatty acids of 6399T were C16 : 0 (32.1 %) C17 : 0cyclo (18.7 %) and C18 : 1ω7c (14.5 %), while Q-8 was the only respiratory quinone detected. The major polar lipids identified were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The genomic DNA G+C content of 6399T was 62.9 (mol%). Strain 6399T can be differentiated from other members of Pandoraea by the absence of C19 : 0ω8c cyclo and by the presence of C17 : 0ω8c cyclo. Together our data show that the bacterial strains 6399T and 7641 represent a novel species of the genus Pandoraea, for which the name Pandoraea fibrosis sp. nov. is proposed (type strain 6399T).


Subject(s)
Burkholderiaceae/classification , Phylogeny , Sputum/microbiology , Bacterial Typing Techniques , Base Composition , Burkholderiaceae/isolation & purification , Cystic Fibrosis , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Humans , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Tasmania , Ubiquinone/chemistry
9.
Sci Rep ; 8(1): 10373, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29991767

ABSTRACT

Mycoplasma hyopneumoniae is an economically devastating, globally disseminated pathogen that can maintain a chronic infectious state within its host, swine. Here, we depict the events underpinning M. hyopneumoniae biofilm formation on an abiotic surface and demonstrate for the first time, biofilms forming on porcine epithelial cell monolayers and in the lungs of pigs, experimentally infected with M. hyopneumoniae. Nuclease treatment prevents biofilms forming on glass but not on porcine epithelial cells indicating that extracellular DNA (eDNA), which localises at the base of biofilms, is critical in the formation of these structures on abiotic surfaces. Subpopulations of M. hyopneumoniae cells, denoted by their ability to take up the dye TOTO-1 and release eDNA, were identified. A visually distinct sub-population of pleomorphic cells, that we refer to here as large cell variants (LCVs), rapidly transition from phase dark to translucent "ghost" cells. The translucent cells accumulate the membrane-impermeable dye TOTO-1, forming readily discernible membrane breaches immediately prior to lysis and the possible release of eDNA and other intracellular content (public goods) into the extracellular environment. Our novel observations expand knowledge of the lifestyles adopted by this wall-less, genome-reduced pathogen and provide further insights to its survival within farm environments and swine.


Subject(s)
Biofilms/growth & development , DNA/metabolism , Genome, Microbial/genetics , Mycoplasma hyopneumoniae/genetics , Animals , Deoxyribonucleases/pharmacology , Epithelial Cells/microbiology , Lung/microbiology , Mycoplasma hyopneumoniae/cytology , Mycoplasma hyopneumoniae/physiology , Surface Properties , Swine
10.
Article in English | MEDLINE | ID: mdl-29535975

ABSTRACT

Mycoplasma hyopneumoniae, an agriculturally important porcine pathogen, disrupts the mucociliary escalator causing ciliostasis, loss of cilial function, and epithelial cell death within the porcine lung. Losses to swine production due to growth rate retardation and reduced feed conversion efficiency are severe, and antibiotics are used heavily to control mycoplasmal pneumonia. Notably, little is known about the repertoire of host receptors that M. hyopneumoniae targets to facilitate colonization. Here we show, for the first time, that actin exists extracellularly on porcine epithelial monolayers (PK-15) using surface biotinylation and 3D-Structured Illumination Microscopy (3D-SIM), and that M. hyopneumoniae binds to the extracellular ß-actin exposed on the surface of these cells. Consistent with this hypothesis we show: (i) monoclonal antibodies that target ß-actin significantly block the ability of M. hyopneumoniae to adhere and colonize PK-15 cells; (ii) microtiter plate binding assays show that M. hyopneumoniae cells bind to monomeric G-actin in a dose dependent manner; (iii) more than 100 M. hyopneumoniae proteins were recovered from affinity-chromatography experiments using immobilized actin as bait; and (iv) biotinylated monomeric actin binds directly to M. hyopneumoniae proteins in ligand blotting studies. Specifically, we show that the P97 cilium adhesin possesses at least two distinct actin-binding regions, and binds monomeric actin with nanomolar affinity. Taken together, these observations suggest that actin may be an important receptor for M. hyopneumoniae within the swine lung and will aid in the future development of intervention strategies against this devastating pathogen. Furthermore, our observations have wider implications for extracellular actin as an important bacterial receptor.


Subject(s)
Actins/metabolism , Adhesins, Bacterial/metabolism , Epithelial Cells/metabolism , Host-Pathogen Interactions/physiology , Mycoplasma hyopneumoniae/metabolism , Mycoplasma hyopneumoniae/pathogenicity , Protein Binding , Actins/drug effects , Animals , Antibodies, Monoclonal/pharmacology , Avidin/metabolism , Biotinylation , Cell Line , Cilia/metabolism , Epithelial Cells/microbiology , Lung , Membrane Proteins/metabolism , Pneumonia of Swine, Mycoplasmal , Swine
11.
mSphere ; 2(5)2017.
Article in English | MEDLINE | ID: mdl-28989969

ABSTRACT

Clostridium sordellii is an often-lethal bacterium causing human and animal disease. Crucial to the infectious cycle of C. sordellii is its ability to produce spores, which can germinate into toxin-producing vegetative bacteria under favorable conditions. However, structural details of the C. sordellii spore are lacking. Here, we used a range of electron microscopy techniques together with superresolution optical microscopy to characterize the C. sordellii spore morphology with an emphasis on the exosporium. The C. sordellii spore is made up of multiple layers with the exosporium presenting as a smooth balloon-like structure that is open at the spore poles. Focusing on the outer spore layers, we compared the morphologies of C. sordellii spores derived from different strains and determined that there is some variation between the spores, most notably with spores of some strains having tubular appendages. Since Clostridium difficile is a close relative of C. sordellii, their spores were compared by electron microscopy and their exosporia were found to be distinctly different from each other. This study therefore provides new structural details of the C. sordellii spore and offers insights into the physical structure of the exosporium across clostridial species. IMPORTANCEClostridium sordellii is a significant pathogen with mortality rates approaching 100%. It is the bacterial spore that is critical in initiating infection and disease. An understanding of spore structures as well as spore morphology across a range of strains may lead to a better understanding of C. sordellii infection and disease. However, the structural characteristics of the C. sordellii spores are limited. In this work, we have addressed this lack of detail and characterized the C. sordellii spore morphology. The use of traditional and advanced microscopy techniques has provided detailed new observations of C. sordellii spore structural features, which serve as a reference point for structural studies of spores from other bacterial species.

12.
Sci Rep ; 7(1): 7072, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28765539

ABSTRACT

Bacterial outer membrane vesicles (OMVs) are extracellular sacs containing biologically active products, such as proteins, cell wall components and toxins. OMVs are reported to contain DNA, however, little is known about the nature of this DNA, nor whether it can be transported into host cells. Our work demonstrates that chromosomal DNA is packaged into OMVs shed by bacteria during exponential phase. Most of this DNA was present on the external surfaces of OMVs, with smaller amounts located internally. The DNA within the internal compartments of Pseudomonas aeruginosa OMVs were consistently enriched in specific regions of the bacterial chromosome, encoding proteins involved in virulence, stress response, antibiotic resistance and metabolism. Furthermore, we demonstrated that OMVs carry DNA into eukaryotic cells, and this DNA was detectable by PCR in the nuclear fraction of cells. These findings suggest a role for OMV-associated DNA in bacterial-host cell interactions and have implications for OMV-based vaccines.


Subject(s)
DNA, Bacterial/metabolism , Endocytosis , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Extracellular Vesicles/metabolism , Gram-Negative Bacteria/metabolism , Cell Line , Humans
13.
Nat Commun ; 8: 14665, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28272414

ABSTRACT

DNA-binding proteins are central regulators of chromosome organization; however, in genome-reduced bacteria their diversity is largely diminished. Whether the chromosomes of such bacteria adopt defined three-dimensional structures remains unexplored. Here we combine Hi-C and super-resolution microscopy to determine the structure of the Mycoplasma pneumoniae chromosome at a 10 kb resolution. We find a defined structure, with a global symmetry between two arms that connect opposite poles, one bearing the chromosomal Ori and the other the midpoint. Analysis of local structures at a 3 kb resolution indicates that the chromosome is organized into domains ranging from 15 to 33 kb. We provide evidence that genes within the same domain tend to be co-regulated, suggesting that chromosome organization influences transcriptional regulation, and that supercoiling regulates local organization. This study extends the current understanding of bacterial genome organization and demonstrates that a defined chromosomal structure is a universal feature of living systems.


Subject(s)
Chromosomes, Bacterial/ultrastructure , DNA, Bacterial/ultrastructure , DNA, Superhelical/ultrastructure , Gene Expression Regulation, Bacterial , Genome, Bacterial/genetics , Mycoplasma pneumoniae/genetics , Chromosome Structures , Microscopy , Molecular Conformation , Mycoplasma pneumoniae/ultrastructure , Nucleic Acid Conformation
14.
Methods Mol Biol ; 1535: 197-209, 2017.
Article in English | MEDLINE | ID: mdl-27914080

ABSTRACT

Advancements in optical microscopy technology have allowed huge progression in the ability to understand protein structure and dynamics in live bacterial cells using fluorescence microscopy. Paramount to high-quality microscopy is good sample preparation to avoid bacterial cell movement that can result in motion blur during image acquisition. Here, we describe two techniques of sample preparation that reduce unwanted cell movement and are suitable for application to a number of bacterial species and imaging methods.


Subject(s)
Bacteria , Microscopy, Fluorescence/methods , Image Processing, Computer-Assisted , Imaging, Three-Dimensional/methods
15.
Front Microbiol ; 8: 2653, 2017.
Article in English | MEDLINE | ID: mdl-29375518

ABSTRACT

Chronic wound infections are a major burden to both society and the health care industry. Bacterial biofilms are the major cause of chronic wound infections and are notoriously recalcitrant to treatments with antibiotics, making them difficult to eradicate. Thus, new approaches are required to combat biofilms in chronic wounds. One possible approach is to use drug combination therapies. Manuka honey has potent broad-spectrum antibacterial activity and has previously shown synergistic activity in combination with antibiotics against common wound pathogens, including Staphylococcus aureus. In addition, manuka honey exhibits anti-biofilm activity, thereby warranting the investigation of its potential as a combination therapy with antibiotics for the topical treatment of biofilm-related infections. Here we report the first use of MacSynergy II to investigate the response of established S. aureus (strain NCTC 8325) biofilms to treatment by combinations of Medihoney (medical grade manuka honey) and conventional antibiotics that are used for preventing or treating infections: rifampicin, oxacillin, fusidic acid, clindamycin, and gentamicin. Using checkerboard microdilution assays, viability assays and MacSynergy II analysis we show that the Medihoney-rifampicin combination was more effective than combinations using the other antibiotics against established staphylococcal biofilms. Medihoney and rifampicin were strongly synergistic in their ability to reduce both biofilm biomass and the viability of embedded S. aureus cells at a level that is likely to be significant in vivo. Other combinations of Medihoney and antibiotic produced an interesting array of effects: Medihoney-fusidic acid treatment showed minor synergistic activity, and Medihoney-clindamycin, -gentamicin, and -oxacillin combinations showed overall antagonistic effects when the honey was used at sub-inhibitory concentration, due to enhanced biofilm formation at these concentrations which could not be counteracted by the antibiotics. However, these combinations were not antagonistic when honey was used at the inhibitory concentration. Confocal scanning laser microscopy confirmed that different honey-antibiotic combination treatments could eradicate biofilms. Our results suggest that honey has potential as an adjunct treatment with rifampicin for chronic wounds infected with staphylococcal biofilms. We also show that MacSynergy II allows a comprehensive examination of the synergistic effects of honey-antibiotic combinations, and can help to identify doses for clinical use.

16.
Sci Rep ; 6: 26005, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27225967

ABSTRACT

Surface translocation by the soil bacterium Myxococcus xanthus is a complex multicellular phenomenon that entails two motility systems. However, the mechanisms by which the activities of individual cells are coordinated to manifest this collective behaviour are currently unclear. Here we have developed a novel assay that enables detailed microscopic examination of M. xanthus motility at the interstitial interface between solidified nutrient medium and a glass coverslip. Under these conditions, M. xanthus motility is characterised by extensive micro-morphological patterning that is considerably more elaborate than occurs at an air-surface interface. We have found that during motility on solidified nutrient medium, M. xanthus forges an interconnected furrow network that is lined with an extracellular matrix comprised of exopolysaccharides, extracellular lipids, membrane vesicles and an unidentified slime. Our observations have revealed that M. xanthus motility on solidified nutrient medium is a stigmergic phenomenon in which multi-cellular collective behaviours are co-ordinated through trail-following that is guided by physical furrows and extracellular matrix materials.


Subject(s)
Bacterial Proteins/metabolism , Cell Membrane/metabolism , Extracellular Matrix/metabolism , Microscopy/methods , Myxococcus xanthus/physiology , Consensus , Models, Biological , Social Networking
17.
Nat Commun ; 7: 11220, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27075392

ABSTRACT

Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs.


Subject(s)
Bacteriolysis , Biofilms , Cell Membrane/metabolism , Organelle Biogenesis , Pseudomonas aeruginosa/physiology , Bacteriolysis/drug effects , Biofilms/drug effects , Cell Membrane/drug effects , DNA, Bacterial/metabolism , Endopeptidases/pharmacology , Extracellular Space/metabolism , Pseudomonas aeruginosa/drug effects , Pyocins/pharmacology , Quinolones/pharmacology , Stress, Physiological/drug effects
18.
Front Microbiol ; 7: 2157, 2016.
Article in English | MEDLINE | ID: mdl-28167929

ABSTRACT

Twitching motility is a mode of surface translocation that is mediated by the extension and retraction of type IV pili and which, depending on the conditions, enables migration of individual cells or can manifest as a complex multicellular collective behavior that leads to biofilm expansion. When twitching motility occurs at the interface of an abiotic surface and solidified nutrient media, it can lead to the emergence of extensive self-organized patterns of interconnected trails that form as a consequence of the actively migrating bacteria forging a furrow network in the substratum beneath the expanding biofilm. These furrows appear to direct bacterial movements much in the same way that roads and footpaths coordinate motor vehicle and human pedestrian traffic. Self-organizing systems such as these can be accounted for by the concept of stigmergy which describes self-organization that emerges through indirect communication via persistent signals within the environment. Many bacterial communities are able to actively migrate across solid and semi-solid surfaces through complex multicellular collective behaviors such as twitching motility and flagella-mediated swarming motility. Here, we have examined the potential of exploiting the stigmergic behavior of furrow-mediated trail following as a means of controlling bacterial biofilm expansion along abiotic surfaces. We found that incorporation of a series of parallel micro-fabricated furrows significantly impeded active biofilm expansion by Pseudomonas aeruginosa and Proteus vulgaris. We observed that in both cases bacterial movements tended to be directed along the furrows. We also observed that narrow furrows were most effective at disrupting biofilm expansion as they impeded the ability of cells to self-organize into multicellular assemblies required for escape from the furrows and migration into new territory. Our results suggest that the implementation of micro-fabricated furrows that exploit stigmergy may be a novel approach to impeding active biofilm expansion across abiotic surfaces such as those used in medical and industrial settings.

19.
Traffic ; 17(3): 245-66, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26707827

ABSTRACT

Ferlins are a family of transmembrane-anchored vesicle fusion proteins uniquely characterized by 5-7 tandem cytoplasmic C2 domains, Ca(2+)-regulated phospholipid-binding domains that regulate vesicle fusion in the synaptotagmin family. In humans, dysferlin mutations cause limb-girdle muscular dystrophy type 2B (LGMD2B) due to defective Ca(2+)-dependent, vesicle-mediated membrane repair and otoferlin mutations cause non-syndromic deafness due to defective Ca(2+)-triggered auditory neurotransmission. In this study, we describe the tissue-specific expression, subcellular localization and endocytic trafficking of the ferlin family. Studies of endosomal transit together with 3D-structured illumination microscopy reveals dysferlin and myoferlin are abundantly expressed at the PM and cycle to Rab7-positive late endosomes, supporting potential roles in the late-endosomal pathway. In contrast, Fer1L6 shows concentrated localization to a specific compartment of the trans-Golgi/recycling endosome, cycling rapidly between this compartment and the PM via Rab11 recycling endosomes. Otoferlin also shows trans-Golgi to PM cycling, with very low levels of PM otoferlin suggesting either brief PM residence, or rare incorporation of otoferlin molecules into the PM. Thus, type-I and type-II ferlins segregate as PM/late-endosomal or trans-Golgi/recycling ferlins, consistent with different ferlins mediating vesicle fusion events in specific subcellular locations.


Subject(s)
Calcium-Binding Proteins/metabolism , Cell Membrane/metabolism , Endosomes/metabolism , Membrane Proteins/metabolism , Muscle Proteins/metabolism , trans-Golgi Network/metabolism , Amino Acid Sequence , Animals , Brain/metabolism , COS Cells , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/genetics , Chlorocebus aethiops , HEK293 Cells , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Molecular Sequence Data , Muscle Proteins/chemistry , Muscle Proteins/genetics , Organ Specificity , Pancreas/metabolism , Protein Transport , rab GTP-Binding Proteins/metabolism
20.
PLoS Pathog ; 11(10): e1005209, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26485648

ABSTRACT

Infection with the human liver fluke Opisthorchis viverrini induces cancer of the bile ducts, cholangiocarcinoma (CCA). Injury from feeding activities of this parasite within the human biliary tree causes extensive lesions, wounds that undergo protracted cycles of healing, and re-injury over years of chronic infection. We show that O. viverrini secreted proteins accelerated wound resolution in human cholangiocytes, an outcome that was compromised following silencing of expression of the fluke-derived gene encoding the granulin-like growth factor, Ov-GRN-1. Recombinant Ov-GRN-1 induced angiogenesis and accelerated mouse wound healing. Ov-GRN-1 was internalized by human cholangiocytes and induced gene and protein expression changes associated with wound healing and cancer pathways. Given the notable but seemingly paradoxical properties of liver fluke granulin in promoting not only wound healing but also a carcinogenic microenvironment, Ov-GRN-1 likely holds marked potential as a therapeutic wound-healing agent and as a vaccine against an infection-induced cancer of major public health significance in the developing world.


Subject(s)
Carcinogenesis/metabolism , Helminth Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Opisthorchiasis/complications , Opisthorchis/metabolism , Wound Healing/physiology , Amino Acid Sequence , Animals , Bile Duct Neoplasms/parasitology , Cholangiocarcinoma/parasitology , Humans , Mice , Microscopy, Confocal , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Opisthorchiasis/metabolism , Progranulins , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL
...