Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 227(1)2024 May 07.
Article in English | MEDLINE | ID: mdl-38431281

ABSTRACT

Auanema freiburgense is a nematode with males, females, and selfing hermaphrodites. When XO males mate with XX females, they typically produce a low proportion of XO offspring because they eliminate nullo-X spermatids. This process ensures that most sperm carry an X chromosome, increasing the likelihood of X chromosome transmission compared to random segregation. This occurs because of an unequal distribution of essential cellular organelles during sperm formation, likely dependent on the X chromosome. Some sperm components are selectively segregated into the X chromosome's daughter cell, while others are discarded with the nullo-X daughter cell. Intriguingly, the interbreeding of 2 A. freiburgense strains results in hybrid males capable of producing viable nullo-X sperm. Consequently, when these hybrid males mate with females, they yield a high percentage of male offspring. To uncover the genetic basis of nullo-spermatid elimination and X chromosome drive, we generated a genome assembly for A. freiburgense and genotyped the intercrossed lines. This analysis identified a quantitative trait locus spanning several X chromosome genes linked to the non-Mendelian inheritance patterns observed in A. freiburgense. This finding provides valuable clues to the underlying factors involved in asymmetric organelle partitioning during male meiotic division and thus non-Mendelian transmission of the X chromosome and sex ratios.


Subject(s)
Chromosome Segregation , Quantitative Trait Loci , X Chromosome , Animals , X Chromosome/genetics , Male , Female , Nematoda/genetics
2.
J Nematol ; 54(1): 20220059, 2022 Feb.
Article in English | MEDLINE | ID: mdl-36879950

ABSTRACT

Nematodes of the genus Auanema are interesting models for studying sex determination mechanisms because their populations consist of three sexual morphs (males, females, and hermaphrodites) and produce skewed sex ratios. Here, we introduce a new undescribed species of this genus, Auanema melissensis n. sp., together with its draft nuclear genome. This species is also trioecious and does not cross with the other described species A. rhodensis or A. freiburgensis. Similar to A. freiburgensis, A. melissensis' maternal environment influences the hermaphrodite versus female sex determination of the offspring. The genome of A. melissensis is ~60 Mb, containing 11,040 protein-coding genes and 8.07% of repeat sequences. Using the estimated ancestral chromosomal gene content (Nigon elements), it was possible to identify putative X chromosome scaffolds.

3.
BMC Biol ; 19(1): 102, 2021 05 17.
Article in English | MEDLINE | ID: mdl-34001117

ABSTRACT

BACKGROUND: Environmental stimuli experienced by the parental generation influence the phenotype of subsequent generations (Demoinet et al., Proc Natl Acad Sci U S A 114:E2689-E2698, 2017; Burton et al., Nat Cell Biol 19:252-257, 2017; Agrawal et al., Nature 401:60-63, 1999). The effects of these stimuli on the parental generation may be passed through the germline, but the mechanisms at the basis of this non-Mendelian type of inheritance, their level of conservation, how they lead to adaptive vs non-adaptive, and intergenerational vs transgenerational inheritance are poorly understood. Here we show that modulation of nutrient-sensing pathways in the parental generation of the nematode Auanema freiburgensis regulates phenotypic plasticity of its offspring. RESULTS: In response to con-specific pheromones indicative of stress, AMP-activated protein kinase (AMPK), mechanistic target of rapamycin complex 1 (mTORC1), and insulin signaling regulate stress resistance and sex determination across one generation, and these effects can be mimicked by pathway modulators. The effectors of these pathways are closely associated with the chromatin, and their regulation affects the chromatin acetylation status in the germline. CONCLUSION: These results suggest that highly conserved metabolic sensors regulate phenotypic plasticity through regulation of subcellular localization of their effectors, leading to changes in chromatin acetylation and epigenetic status of the germline.


Subject(s)
Epigenesis, Genetic , Inheritance Patterns , Sex Determination Processes , Animals , Caenorhabditis elegans/genetics , Chromatin , Germ Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...