Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Opt Lett ; 49(8): 2065-2068, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621077

ABSTRACT

We report ultrabroadband two-dimensional electronic spectroscopy (2D ES) measurements obtained in the pump-probe geometry using conventional optics. A phase-stabilized Michelson interferometer provides the pump-pulse delay interval, τ1, necessary to obtain the excitation-frequency dimension. Spectral resolution of the probe beam provides the detection-frequency dimension, ω3. The interferometer incorporates active phase stabilization via a piezo stage and feedback from interference of a continuous-wave reference laser detected in quadrature. To demonstrate the method, we measured a well-characterized laser dye sample and obtained the known peak structure. The vibronic peaks are modulated as a function of the waiting time, τ2, by vibrational wave packets. The interferometer simplifies ultrabroadband 2D ES measurements and analysis.

2.
J Chem Phys ; 160(16)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38647298

ABSTRACT

When used as pump pulses in transient absorption spectroscopy measurements, femtosecond laser pulses can produce oscillatory signals known as quantum beats. The quantum beats arise from coherent superpositions of the states of the sample and are best studied in the Fourier domain using Femtosecond Coherence Spectroscopy (FCS), which consists of one-dimensional amplitude and phase plots of a specified oscillation frequency as a function of the detection frequency. Prior works have shown ubiquitous amplitude nodes and π phase shifts in FCS from excited-state vibrational wavepackets in monomer samples. However, the FCS arising from vibronic-exciton states in molecular aggregates have not been studied theoretically. Here, we use a model of vibronic-exciton states in molecular dimers based on displaced harmonic oscillators to simulate FCS for dimers in two important cases. Simulations reveal distinct spectral signatures of excited-state vibronic-exciton coherences in molecular dimers that may be used to distinguish them from monomer vibrational coherences. A salient result is that, for certain relative orientations of the transition dipoles, the key resonance condition between the electronic coupling and the frequency of the vibrational mode may yield strong enhancement of the quantum-beat amplitude and, perhaps, also cause a significant decrease of the oscillation frequency to a value far lower than the vibrational frequency. Future studies using these results will lead to new insights into the excited-state coherences generated in photosynthetic pigment-protein complexes.

3.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38441423

ABSTRACT

A noncollinear optical parametric amplifier (NOPA) can produce few-cycle femtosecond laser pulses that are ideally suited for time-resolved optical spectroscopy measurements. However, the nonlinear-optical process giving rise to ultrabroadband pulses is susceptible to spatiotemporal dispersion problems. Here, we detail refinements, including chirped-pulse amplification (CPA) and pulse-front matching (PFM), that minimize spatiotemporal dispersion and thereby improve the properties of ultrabroadband pulses produced by a NOPA. The description includes a rationale behind the choices of optical and optomechanical components, as well as assessment protocols. We demonstrate these techniques using a 1 kHz, second-harmonic Ti:sapphire pump configuration, which produces ∼5-fs duration pulses that span from about 500 to 800 nm with a bandwidth of about 200 THz. To demonstrate the utility of the CPA-PFM-NOPA, we measure vibrational quantum beats in the transient-absorption spectrum of methylene blue, a dye molecule that serves as a reference standard.

4.
Phys Chem Chem Phys ; 25(41): 28437-28451, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37843877

ABSTRACT

A bacteriochlorophyll a (Bchla) dimer is a basic functional unit in the LH1 and LH2 photosynthetic pigment-protein antenna complexes of purple bacteria, where an ordered, close arrangement of Bchla pigments-secured by noncovalent bonding to a protein template-enables exciton delocalization at room temperature. Stable and tunable synthetic analogs of this key photosynthetic subunit could lead to facile engineering of exciton-based systems such as in artificial photosynthesis, organic optoelectronics, and molecular quantum computing. Here, using a combination of synthesis and theory, we demonstrate that exciton delocalization can be achieved in a dimer of a synthetic bacteriochlorin (BC) featuring stability, high structural modularity, and spectral properties advantageous for exciton-based devices. The BC dimer was covalently templated by DNA, a stable and highly programmable scaffold. To achieve exciton delocalization in the absence of pigment-protein interactions critical for the Bchla dimer, we relied on the strong transition dipole moment in BC enabled by two auxochromes along the Qy transition, and omitting the central metal and isocyclic ring. The spectral properties of the synthetic "free" BC closely resembled those of Bchla in an organic solvent. Applying spectroscopic modeling, the exciton delocalization in the DNA-templated BC dimer was evaluated by extracting the excitonic hopping parameter, J to be 214 cm-1 (26.6 meV). For comparison, the same method applied to the natural protein-templated Bchla dimer yielded J of 286 cm-1 (35.5 meV). The smaller value of J in the BC dimer likely arose from the partial bacteriochlorin intercalation and the difference in medium effect between DNA and protein.


Subject(s)
Light-Harvesting Protein Complexes , Photosynthetic Reaction Center Complex Proteins , Light-Harvesting Protein Complexes/chemistry , Computing Methodologies , Quantum Theory , Photosynthetic Reaction Center Complex Proteins/chemistry , DNA
5.
J Phys Chem A ; 127(23): 4901-4918, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37261888

ABSTRACT

Aggregates of conjugated organic molecules (i.e., dyes) may exhibit relatively large one- and two-exciton interaction energies, which has motivated theoretical studies on their potential use in quantum information science (QIS). In practice, one way of realizing large one- and two-exciton interaction energies is by maximizing the transition dipole moment (µ) and difference static dipole moment (Δd) of the constituent dyes. In this work, we characterized the electronic structure and excited-state dynamics of monomers and aggregates of four asymmetric polymethine dyes templated via DNA. Using steady-state and time-resolved absorption and fluorescence spectroscopy along with quantum-chemical calculations, we found the asymmetric polymethine dye monomers exhibited a large µ, an appreciable Δd, and a long excited-state lifetime (τp). We formed dimers of all four dyes and observed that one dye, Dy 754, displayed the strongest propensity for aggregation and exciton delocalization. Motivated by these results, we undertook a more comprehensive survey of Dy 754 dimer and tetramer aggregates using steady-state absorption and circular dichroism spectroscopy. Modeling these spectra revealed an appreciable excitonic hopping parameter (J). Lastly, we used femtosecond transient absorption spectroscopy to characterize τp of the dimer and tetramer, which we observed to be exceedingly short. This work revealed that asymmetric polymethine dyes exhibited µ, Δd, monomer τp, and J values promising for QIS; however, further work is needed to overcome excited-state quenching and achieve long aggregate τp.

6.
J Chem Phys ; 158(3): 035101, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36681650

ABSTRACT

DNA is a re-configurable, biological information-storage unit, and much remains to be learned about its heterogeneous structural dynamics. For example, while it is known that molecular dyes templated onto DNA exhibit increased photostability, the mechanism by which the structural dynamics of DNA affect the dye photophysics remains unknown. Here, we use femtosecond, two-dimensional electronic spectroscopy measurements of a cyanine dye, Cy5, to probe local conformations in samples of single-stranded DNA (ssDNA-Cy5), double-stranded DNA (dsDNA-Cy5), and Holliday junction DNA (HJ-DNA-Cy5). A line shape analysis of the 2D spectra reveals a strong excitation-emission correlation present in only the dsDNA-Cy5 complex, which is a signature of inhomogeneous broadening. Molecular dynamics simulations support the conclusion that this inhomogeneous broadening arises from a nearly degenerate conformer found only in the dsDNA-Cy5 complex. These insights will support future studies on DNA's structural heterogeneity.


Subject(s)
Fluorescent Dyes , Quinolines , Fluorescent Dyes/chemistry , DNA/chemistry , Carbocyanines/chemistry , DNA, Single-Stranded
7.
J Phys Chem A ; 127(5): 1141-1157, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36705555

ABSTRACT

Molecular (dye) aggregates are a materials platform of interest in light harvesting, organic optoelectronics, and nanoscale computing, including quantum information science (QIS). Strong excitonic interactions between dyes are key to their use in QIS; critically, properties of the individual dyes govern the extent of these interactions. In this work, the electronic structure and excited-state dynamics of a series of indolenine-based squaraine dyes incorporating dimethylamino (electron donating) and/or nitro (electron withdrawing) substituents, so-called asymmetric dyes, were characterized. The dyes were covalently tethered to DNA Holliday junctions to suppress aggregation and permit characterization of their monomer photophysics. A combination of density functional theory and steady-state absorption spectroscopy shows that the difference static dipole moment (Δd) successively increases with the addition of these substituents while simultaneously maintaining a large transition dipole moment (µ). Steady-state fluorescence and time-resolved absorption and fluorescence spectroscopies uncover a significant nonradiative decay pathway in the asymmetrically substituted dyes that drastically reduces their excited-state lifetime (τ). This work indicates that Δd can indeed be increased by functionalizing dyes with electron donating and withdrawing substituents and that, in certain classes of dyes such as these asymmetric squaraines, strategies may be needed to ensure long τ, e.g., by rigidifying the π-conjugated network.

8.
J Phys Chem C Nanomater Interfaces ; 126(40): 17164-17175, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36268205

ABSTRACT

Molecular excitons are useful for applications in light harvesting, organic optoelectronics, and nanoscale computing. Electronic energy transfer (EET) is a process central to the function of devices based on molecular excitons. Achieving EET with a high quantum efficiency is a common obstacle to excitonic devices, often owing to the lack of donor and acceptor molecules that exhibit favorable spectral overlap. EET quantum efficiencies may be substantially improved through the use of heteroaggregates-aggregates of chemically distinct dyes-rather than individual dyes as energy relay units. However, controlling the assembly of heteroaggregates remains a significant challenge. Here, we use DNA Holliday junctions to assemble homo- and heterotetramer aggregates of the prototypical cyanine dyes Cy5 and Cy5.5. In addition to permitting control over the number of dyes within an aggregate, DNA-templated assembly confers control over aggregate composition, i.e., the ratio of constituent Cy5 and Cy5.5 dyes. By varying the ratio of Cy5 and Cy5.5, we show that the most intense absorption feature of the resulting tetramer can be shifted in energy over a range of almost 200 meV (1600 cm-1). All tetramers pack in the form of H-aggregates and exhibit quenched emission and drastically reduced excited-state lifetimes compared to the monomeric dyes. We apply a purely electronic exciton theory model to describe the observed progression of the absorption spectra. This model agrees with both the measured data and a more sophisticated vibronic model of the absorption and circular dichroism spectra, indicating that Cy5 and Cy5.5 heteroaggregates are largely described by molecular exciton theory. Finally, we extend the purely electronic exciton model to describe an idealized J-aggregate based on Förster resonance energy transfer (FRET) and discuss the potential advantages of such a device over traditional FRET relays.

9.
J Chem Phys ; 157(15): 154101, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36272796

ABSTRACT

A chiral analog of transient absorption spectroscopy, transient circular dichroism (TCD) spectroscopy is an emerging time-resolved method. Both spectroscopic methods can probe the electronic transitions of a sample, and TCD is additionally sensitive to the dynamic aspects of chirality, such as those induced by molecular excitons. Here, we develop a theoretical description of TCD for electronic multi-level models in which the pump pulse is linearly polarized and probe pulse is alternately left- and right-circularly polarized. We derive effective response functions analogous to those often used to describe other four-wave mixing methods and then simulate and analyze TCD spectra for three representative multi-level electronic model systems. We elaborate on the presence and detection of the spectral signatures of electronic coherences.

10.
Molecules ; 27(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36235149

ABSTRACT

Molecular aggregates are of interest to a broad range of fields including light harvesting, organic optoelectronics, and nanoscale computing. In molecular aggregates, nonradiative decay pathways may emerge that were not present in the constituent molecules. Such nonradiative decay pathways may include singlet fission, excimer relaxation, and symmetry-breaking charge transfer. Singlet fission, sometimes referred to as excitation multiplication, is of great interest to the fields of energy conversion and quantum information. For example, endothermic singlet fission, which avoids energy loss, has been observed in covalently bound, linear perylene trimers and tetramers. In this work, the electronic structure and excited-state dynamics of dimers of a perylene derivative templated using DNA were investigated. Specifically, DNA Holliday junctions were used to template the aggregation of two perylene molecules covalently linked to a modified uracil nucleobase through an ethynyl group. The perylenes were templated in the form of monomer, transverse dimer, and adjacent dimer configurations. The electronic structure of the perylene monomers and dimers were characterized via steady-state absorption and fluorescence spectroscopy. Initial insights into their excited-state dynamics were gleaned from relative fluorescence intensity measurements, which indicated that a new nonradiative decay pathway emerges in the dimers. Femtosecond visible transient absorption spectroscopy was subsequently used to elucidate the excited-state dynamics. A new excited-state absorption feature grows in on the tens of picosecond timescale in the dimers, which is attributed to the formation of perylene anions and cations resulting from symmetry-breaking charge transfer. Given the close proximity required for symmetry-breaking charge transfer, the results shed promising light on the prospect of singlet fission in DNA-templated molecular aggregates.


Subject(s)
Perylene , DNA , DNA, Cruciform , Imides/chemistry , Uracil
11.
J Phys Chem Lett ; 13(24): 5413-5423, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35679146

ABSTRACT

Femtosecond laser pulses readily produce coherent quantum beats in transient-absorption spectra. These oscillatory signals often arise from molecular vibrations and therefore may contain information about the excited-state potential energy surface near the Franck-Condon region. Here, by fitting the measured spectra of two laser dyes to microscopic models of femtosecond coherence spectra (FCS) arising from molecular vibrations, we classify coherent quantum-beat signals as fundamentals or overtones and quantify their Huang-Rhys factors and anharmonicity values. We discuss the extracted Huang-Rhys factors in the context of quantum-chemical computations. This work solidifies the use of FCS for analysis of coherent quantum beats arising from molecular vibrations, which will aid studies of molecular aggregates and photosynthetic proteins.


Subject(s)
Photosynthesis , Vibration , Lasers
12.
J Phys Chem Lett ; 13(12): 2782-2791, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35319215

ABSTRACT

Molecular excitons, which propagate spatially via electronic energy transfer, are central to numerous applications including light harvesting, organic optoelectronics, and nanoscale computing; they may also benefit applications such as photothermal therapy and photoacoustic imaging through the local generation of heat via rapid excited-state quenching. Here we show how to tune between energy transfer and quenching for heterodimers of the same pair of cyanine dyes by altering their spatial configuration on a DNA template. We assemble "transverse" and "adjacent" heterodimers of Cy5 and Cy5.5 using DNA Holliday junctions. We find that the transverse heterodimers exhibit optical properties consistent with excitonically interacting dyes and fluorescence quenching, while the adjacent heterodimers exhibit optical properties consistent with nonexcitonically interacting dyes and disproportionately large Cy5.5 emission, suggestive of energy transfer between dyes. We use transient absorption spectroscopy to show that quenching in the transverse heterodimer occurs via rapid nonradiative decay to the ground state (∼31 ps) and that in the adjacent heterodimer rapid energy transfer from Cy5 to Cy5.5 (∼420 fs) is followed by Cy5.5 excited-state relaxation (∼700 ps). Accessing such drastically different photophysics, which may be tuned on demand for different target applications, highlights the utility of DNA as a template for dye aggregation.


Subject(s)
DNA , Fluorescent Dyes , DNA/chemistry , DNA Replication , Energy Transfer , Fluorescent Dyes/chemistry , Spectrum Analysis
13.
J Phys Chem B ; 125(36): 10240-10259, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34473494

ABSTRACT

DNA-templated molecular (dye) aggregates are a novel class of materials that have garnered attention in a broad range of areas including light harvesting, sensing, and computing. Using DNA to template dye aggregation is attractive due to the relative ease with which DNA nanostructures can be assembled in solution, the diverse array of nanostructures that can be assembled, and the ability to precisely position dyes to within a few Angstroms of one another. These factors, combined with the programmability of DNA, raise the prospect of designer materials custom tailored for specific applications. Although considerable progress has been made in characterizing the optical properties and associated electronic structures of these materials, less is known about their excited-state dynamics. For example, little is known about how the excited-state lifetime, a parameter essential to many applications, is influenced by structural factors, such as the number of dyes within the aggregate and their spatial arrangement. In this work, we use a combination of transient absorption spectroscopy and global target analysis to measure excited-state lifetimes in a series of DNA-templated cyanine dye aggregates. Specifically, we investigate six distinct dimer, trimer, and tetramer aggregates-based on the ubiquitous cyanine dye Cy5-templated using both duplex and Holliday junction DNA nanostructures. We find that these DNA-templated Cy5 aggregates all exhibit significantly reduced excited-state lifetimes, some by more than 2 orders of magnitude, and observe considerable variation among the lifetimes. We attribute the reduced excited-state lifetimes to enhanced nonradiative decay and proceed to discuss various structural factors, including exciton delocalization, dye separation, and DNA heterogeneity, that may contribute to the observed reduction and variability of excited-state lifetimes. Guided by insights from structural modeling, we find that the reduced lifetimes and enhanced nonradiative decay are most strongly correlated with the distance between the dyes. These results inform potential tradeoffs between dye separation, excitonic coupling strength, and excited-state lifetime that motivate deeper mechanistic understanding, potentially via further dye and dye template design.


Subject(s)
Coloring Agents , Quinolines , DNA , DNA Replication , DNA, Cruciform
14.
J Phys Chem A ; 125(12): 2425-2435, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33724844

ABSTRACT

Femtosecond laser pulses can produce oscillatory signals in transient-absorption spectroscopy measurements. The quantum beats are often studied using femtosecond coherence spectra (FCS), the Fourier domain amplitude, and phase profiles at individual oscillation frequencies. In principle, one can identify the mechanism that gives rise to each quantum-beat signal by comparing its measured FCS to those arising from microscopic models. To date, however, most measured FCS deviate from the ubiquitous harmonic oscillator model. Here, we expand the inventory of models to which the measured spectra can be compared. We develop quantum-mechanical models of the fundamental, overtone, and combination-band FCS arising from harmonic potentials, the FCS of anharmonic potentials, and the FCS of a purely electronic dimer. This work solidifies the use of FCS for identifying electronic coherences that can arise in measurements of molecular aggregates including photosynthetic proteins. Furthermore, future studies can use the derived expressions to fit the measured FCS and thereby extract microscopic parameters of molecular potential-energy surfaces.

15.
Commun Chem ; 42021.
Article in English | MEDLINE | ID: mdl-35474961

ABSTRACT

Molecular excitons play a central role in natural and artificial light harvesting, organic electrònics, and nanoscale computing. The structure and dynamics of molecular excitons, critical to each application, are sensitively governed by molecular packing. Deoxyribonucleic acid (DNA) templating is a powerful approach that enables controlled aggregation via sub-nanometer positioning of molecular dyes. However, finer sub-Angstrom control of dye packing is needed to tailor excitonic properties for specific applications. Here, we show that adding rotaxane rings to squaraine dyes templated with DNA promotes an elusive oblique packing arrangement with highly desirable optical properties. Specifically, dimers of these squaraine:rotaxanes exhibit an absorption spectrum with near-equal intensity excitonically split absorption bands. Theoretical analysis indicates that the transitions are mostly electronic in nature and only have similar intensities over a narrow range of packing angles. Compared with squaraine dimers, squaraine:rotaxane dimers also exhibit extended excited-state lifetimes and less structural heterogeneity. The approach proposed here may be generally useful for optimizing excitonic materials for a variety of applications ranging from solar energy conversion to quantum information science.

16.
Commun Chem ; 4(1): 19, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-36697509

ABSTRACT

Molecular excitons play a central role in natural and artificial light harvesting, organic electronics, and nanoscale computing. The structure and dynamics of molecular excitons, critical to each application, are sensitively governed by molecular packing. Deoxyribonucleic acid (DNA) templating is a powerful approach that enables controlled aggregation via sub-nanometer positioning of molecular dyes. However, finer sub-Angstrom control of dye packing is needed to tailor excitonic properties for specific applications. Here, we show that adding rotaxane rings to squaraine dyes templated with DNA promotes an elusive oblique packing arrangement with highly desirable optical properties. Specifically, dimers of these squaraine:rotaxanes exhibit an absorption spectrum with near-equal intensity excitonically split absorption bands. Theoretical analysis indicates that the transitions are mostly electronic in nature and only have similar intensities over a narrow range of packing angles. Compared with squaraine dimers, squaraine:rotaxane dimers also exhibit extended excited-state lifetimes and less structural heterogeneity. The approach proposed here may be generally useful for optimizing excitonic materials for a variety of applications ranging from solar energy conversion to quantum information science.

17.
Angew Chem Int Ed Engl ; 59(49): 22140-22149, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33245600

ABSTRACT

Inverse electron demand Diels-Alder reactions between s-tetrazines and strained dienophiles have numerous applications in fluorescent labeling of biomolecules. Herein, we investigate the effect of the dienophile on the fluorescence enhancement obtained upon reaction with a tetrazine-quenched fluorophore and study the possible mechanisms of fluorescence quenching by both the tetrazine and its reaction products. The dihydropyridazine obtained from reaction with a strained cyclooctene shows a residual fluorescence quenching effect, greater than that exerted by the pyridazine arising from reaction with the analogous alkyne. Linear and ultrabroadband two-dimensional electronic spectroscopy experiments reveal that resonance energy transfer is the mechanism responsible for the fluorescence quenching effect of tetrazines, whereas a mechanism involving more intimate electronic coupling, likely photoinduced electron transfer, is responsible for the quenching effect of the dihydropyridazine. These studies uncover parameters that can be tuned to maximize fluorogenic efficiency in bioconjugation reactions and reveal that strained alkynes are better reaction partners for achieving maximum contrast ratio.


Subject(s)
Fluorescent Dyes/chemistry , Optical Imaging , Tetrazoles/chemistry , Cycloaddition Reaction , Fluorescent Dyes/chemical synthesis , Molecular Structure , Tetrazoles/chemical synthesis
18.
Phys Chem Chem Phys ; 22(36): 20265-20283, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32966428

ABSTRACT

Despite their important role in photochemistry and expected presence in most polyatomic molecules, conical intersections have been thoroughly characterized in a comparatively small number of systems. Conical intersections can confer molecular photoreactivity or photostability, often with remarkable efficacy, due to their unique structure: at a conical intersection, the adiabatic potential energy surfaces of two or more electronic states are degenerate, enabling ultrafast decay from an excited state without radiative emission, known as nonadiabatic transfer. Furthermore, the precise conical intersection topography determines fundamental properties of photochemical processes, including excited-state decay rate, efficacy, and molecular products that are formed. However, these relationships have yet to be defined comprehensively. In this article, we use an adaptable computational model to investigate a variety of conical intersection topographies, simulate resulting nonadiabatic dynamics, and calculate key photochemical observables. We varied the vibrational mode frequencies to modify conical intersection topography systematically in four primary classes of conical intersections and quantified the resulting rate, total yield, and product yield of nonadiabatic decay. The results reveal that higher vibrational mode frequencies reduce nonadiabatic transfer, but increase the transfer rate and resulting photoproduct formation. These trends can inform progress toward experimental control of photochemical reactions or tuning of molecules' photochemical properties based on conical intersections and their topography.

19.
J Phys Chem A ; 123(36): 7768-7776, 2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31436996

ABSTRACT

Conical intersections are ubiquitous in photochemical processes, where nonadiabatic transfer induces ultrafast nonradiative decay from an excited state. Although they eluded experimental detection until the 1990s, today three diagnostic attributes are generally associated with photochemical reactions through conical intersections: ultrafast electronic dynamics, negligible fluorescence, and coherent wavepacket transfer. Here, we use generalized quantum dynamics simulations to show that coherent nonadiabatic transfer of excited vibrational wavepackets can occur even without reaching the conical intersection region. Instead, the wavepacket remains distant from the conical intersection throughout. In some topographies, an energetically inaccessible conical intersection can be completely avoided, yet still induce substantial nonadiabatic transfer with ultrafast transfer efficiencies that are nearly identical to those of direct transfer through a conical intersection. These results reveal that the diagnostic properties of conical intersections are not actually specific to decay pathways traveling directly through the intersection funnel, as is the common interpretation, but can also arise from alternative pathways that do not reach the intersection. This suggests that the diagnostic features and experimental signals associated with conical intersections should be reassessed, and the concept of pathways through a conical intersection as the "paradigm of photochemistry" may need to be adjusted.

20.
J Phys Chem Lett ; 10(13): 3550-3556, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31181167

ABSTRACT

The Born-Oppenheimer adiabatic limit applies broadly in chemistry because most reactions occur on the ground electronic state. Photochemical reactions involve two or more electronic states and need not be subject to this adiabatic limit. The spectroscopic signatures of nonadiabatic processes are subtle, and therefore, experimental investigations have been limited to the few systems dominated by single photochemical outcomes. Systems with branched excited-state pathways have been neglected, despite their potential to reveal insights into photochemical reactivity. Here we present experimental evidence from coherent three-dimensional electronic spectroscopy that the E to Z photoisomerization of phytochrome Cph1 is strongly nonadiabatic, and the simulations reproduce the measured features only when the photoisomerization proceeds nonadiabatically near, but not through, a conical intersection. The results broaden the general understanding of photoisomerization mechanisms and motivate future studies of nonadiabatic processes with multiple outcomes arising from branching on excited-state potential energy surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...