Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Nov 19.
Article in English | MEDLINE | ID: mdl-38249518

ABSTRACT

Replication Timing (RT) refers to the temporal order in which the genome is replicated during S phase. Early replicating regions correlate with the transcriptionally active, accessible euchromatin (A) compartment, while late replicating regions correlate with the heterochromatin (B) compartment and repressive histone marks. Previously, widespread A/B genome compartmentalization changes were reported following Brd2 depletion. Since RT and A/B compartmentalization are two of the most highly correlated chromosome properties, we evaluated the effects of Brd2 depletion on RT. We performed E/L Repli-Seq following Brd2 depletion in the previously described Brd2 conditional degron cell line and found no significant alterations in RT after Brd2 KD. This finding prompted us to re-analyze the Micro-C data from the previous publication. We report that we were unable to detect any compartmentalization changes in Brd2 depleted cells compared to DMSO control using the same data. Taken together, our findings demonstrate that Brd2 depletion alone does not affect A/B compartmentalization or RT in mouse embryonic stem cells.

2.
Cell ; 176(4): 816-830.e18, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30595451

ABSTRACT

The temporal order of DNA replication (replication timing [RT]) is highly coupled with genome architecture, but cis-elements regulating either remain elusive. We created a series of CRISPR-mediated deletions and inversions of a pluripotency-associated topologically associating domain (TAD) in mouse ESCs. CTCF-associated domain boundaries were dispensable for RT. CTCF protein depletion weakened most TAD boundaries but had no effect on RT or A/B compartmentalization genome-wide. By contrast, deletion of three intra-TAD CTCF-independent 3D contact sites caused a domain-wide early-to-late RT shift, an A-to-B compartment switch, weakening of TAD architecture, and loss of transcription. The dispensability of TAD boundaries and the necessity of these "early replication control elements" (ERCEs) was validated by deletions and inversions at additional domains. Our results demonstrate that discrete cis-regulatory elements orchestrate domain-wide RT, A/B compartmentalization, TAD architecture, and transcription, revealing fundamental principles linking genome structure and function.


Subject(s)
DNA Replication Timing/physiology , DNA Replication/genetics , DNA Replication/physiology , Animals , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Chromatin , DNA/genetics , DNA Replication Timing/genetics , Embryonic Stem Cells , Enhancer Elements, Genetic/genetics , Mammals/genetics , Mammals/metabolism , Mice , Repressor Proteins/metabolism , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...