Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
PLoS Comput Biol ; 19(10): e1011533, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37844111

ABSTRACT

Epidemics of infectious diseases posing a serious risk to human health have occurred throughout history. During recent epidemics there has been much debate about policy, including how and when to impose restrictions on behaviour. Policymakers must balance a complex spectrum of objectives, suggesting a need for quantitative tools. Whether health services might be 'overwhelmed' has emerged as a key consideration. Here we show how costly interventions, such as taxes or subsidies on behaviour, can be used to exactly align individuals' decision making with government preferences even when these are not aligned. In order to achieve this, we develop a nested optimisation algorithm of both the government intervention strategy and the resulting equilibrium behaviour of individuals. We focus on a situation in which the capacity of the healthcare system to treat patients is limited and identify conditions under which the disease dynamics respect the capacity limit. We find an extremely sharp drop in peak infections at a critical maximum infection cost in the government's objective function. This is in marked contrast to the gradual reduction of infections if individuals make decisions without government intervention. We find optimal interventions vary less strongly in time when interventions are costly to the government and that the critical cost of the policy switch depends on how costly interventions are.


Subject(s)
Epidemics , Physical Distancing , Humans , Epidemics/prevention & control , Policy , Delivery of Health Care
2.
PLoS One ; 18(7): e0288963, 2023.
Article in English | MEDLINE | ID: mdl-37478107

ABSTRACT

During epidemics people may reduce their social and economic activity to lower their risk of infection. Such social distancing strategies will depend on information about the course of the epidemic but also on when they expect the epidemic to end, for instance due to vaccination. Typically it is difficult to make optimal decisions, because the available information is incomplete and uncertain. Here, we show how optimal decision-making depends on information about vaccination timing in a differential game in which individual decision-making gives rise to Nash equilibria, and the arrival of the vaccine is described by a probability distribution. We predict stronger social distancing the earlier the vaccination is expected and also the more sharply peaked its probability distribution. In particular, equilibrium social distancing only meaningfully deviates from the no-vaccination equilibrium course if the vaccine is expected to arrive before the epidemic would have run its course. We demonstrate how the probability distribution of the vaccination time acts as a generalised form of discounting, with the special case of an exponential vaccination time distribution directly corresponding to regular exponential discounting.


Subject(s)
Epidemics , Vaccines , Humans , Physical Distancing , Epidemics/prevention & control , Vaccination , Uncertainty
3.
Phys Rev E ; 107(6-2): 065102, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37464629

ABSTRACT

Microswimmers can acquire information on the surrounding fluid by sensing mechanical queues. They can then navigate in response to these signals. We analyze this navigation by combining deep reinforcement learning with direct numerical simulations to resolve the hydrodynamics. We study how local and nonlocal information can be used to train a swimmer to achieve particular swimming tasks in a nonuniform flow field, in particular, a zigzag shear flow. The swimming tasks are (1) learning how to swim in the vorticity direction, (2) learning how to swim in the shear-gradient direction, and (3) learning how to swim in the shear-flow direction. We find that access to laboratory frame information on the swimmer's instantaneous orientation is all that is required in order to reach the optimal policy for tasks (1) and (2). However, information on both the translational and rotational velocities seems to be required to accomplish task (3). Inspired by biological microorganisms, we also consider the case where the swimmers sense local information, i.e., surface hydrodynamic forces, together with a signal direction. This might correspond to gravity or, for microorganisms with light sensors, a light source. In this case, we show that the swimmer can reach a comparable level of performance to that of a swimmer with access to laboratory frame variables. We also analyze the role of different swimming modes, i.e., pusher, puller, and neutral.

4.
Sci Adv ; 9(20): eadg0432, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37196085

ABSTRACT

Interfacial tension plays an important role in governing the dynamics of droplet coalescence and determining how condensates interact with and deform lipid membranes and biological filaments. We demonstrate that an interfacial tension-only model is inadequate for describing stress granules in live cells. Harnessing a high-throughput flicker spectroscopy pipeline to analyze the shape fluctuations of tens of thousands of stress granules, we find that the measured fluctuation spectra require an additional contribution, which we attribute to elastic bending deformation. We also show that stress granules have an irregular, nonspherical base shape. These results suggest that stress granules are viscoelastic droplets with a structured interface, rather than simple Newtonian liquids. Furthermore, we observe that the measured interfacial tensions and bending rigidities span a range of several orders of magnitude. Hence, different types of stress granules (and more generally, other biomolecular condensates) can only be differentiated via large-scale surveys.


Subject(s)
Cytoskeleton , Stress Granules
5.
Phys Rev Lett ; 130(16): 168201, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37154632

ABSTRACT

Inspired by the swarming or flocking of animal systems we study groups of agents moving in unbounded 2D space. Individual trajectories derive from a "bottom-up" principle: individuals reorient to maximize their future path entropy over environmental states. This can be seen as a proxy for keeping options open, a principle that may confer evolutionary fitness in an uncertain world. We find an ordered (coaligned) state naturally emerges, as well as disordered states or rotating clusters; similar phenotypes are observed in birds, insects, and fish, respectively. The ordered state exhibits an order-disorder transition under two forms of noise: (i) standard additive orientational noise, applied to the postdecision orientations and (ii) "cognitive" noise, overlaid onto each individual's model of the future paths of other agents. Unusually, the order increases at low noise, before later decreasing through the order-disorder transition as the noise increases further.

6.
R Soc Open Sci ; 8(3): 201536, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33959323

ABSTRACT

The collective motion of animal groups often exhibits velocity-velocity correlations between nearest neighbours, with the strongest velocity correlations observed at the shortest inter-animal spacings. This may have been a motivational factor in the development of models based primarily on short-ranged interactions. Here we ask whether such observations necessarily mean that the interactions are short-ranged. We develop a minimal model of collective motion capable of supporting interactions of arbitrary range and show that it represents a counterexample: the strongest velocity correlations emerge at the shortest distances, even when the interactions are explicitly non-local.

7.
J R Soc Interface ; 18(177): 20210114, 2021 04.
Article in English | MEDLINE | ID: mdl-33849331

ABSTRACT

We study the collective dynamics of groups of whirligig beetles Dineutus discolor (Coleoptera: Gyrinidae) swimming freely on the surface of water. We extract individual trajectories for each beetle, including positions and orientations, and use this to discover (i) a density-dependent speed scaling like v ∼ ρ-ν with ν ≈ 0.4 over two orders of magnitude in density (ii) an inertial delay for velocity alignment of approximately 13 ms and (iii) coexisting high and low-density phases, consistent with motility-induced phase separation (MIPS). We modify a standard active Brownian particle (ABP) model to a corralled ABP (CABP) model that functions in open space by incorporating a density-dependent reorientation of the beetles, towards the cluster. We use our new model to test our hypothesis that an motility-induced phase separation (MIPS) (or a MIPS like effect) can explain the co-occurrence of high- and low-density phases we see in our data. The fitted model then successfully recovers a MIPS-like condensed phase for N = 200 and the absence of such a phase for smaller group sizes N = 50, 100.


Subject(s)
Coleoptera , Animals , Swimming
8.
Phys Rev Lett ; 125(18): 188002, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33196252

ABSTRACT

The Gaussian (saddle splay) rigidity of fluid membranes controls their equilibrium topology but is notoriously difficult to measure. In lipid mixtures, typical of living cells, linear interfaces separate liquid ordered (LO) from liquid disordered (LD) bilayer phases at subcritical temperatures. Here, we consider such membranes supported by curved substrates that thereby control the membrane curvatures. We show how spectral analysis of the fluctuations of the LO-LD interface provides a novel way of measuring the difference in Gaussian rigidity between the two phases. We provide a number of conditions for such interface fluctuations to be both experimentally measurable and sufficiently sensitive to the value of the Gaussian rigidity, while remaining in the perturbative regime of our analysis.


Subject(s)
Cell Membrane/chemistry , Lipid Bilayers/chemistry , Models, Chemical , Cholesterol/chemistry , Normal Distribution , Surface Tension
9.
Soft Matter ; 16(40): 9319-9330, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32935733

ABSTRACT

Utilising Onsager's variational formulation, we derive dynamical equations for the relaxation of a fluid membrane tube in the limit of small deformation, allowing for a contrast of solvent viscosity across the membrane and variations in surface tension due to membrane incompressibility. We compute the relaxation rates, recovering known results in the case of purely axis-symmetric perturbations and making new predictions for higher order (azimuthal) m-modes. We analyse the long and short wavelength limits of these modes by making use of various asymptotic arguments. We incorporate stochastic terms to our dynamical equations suitable to describe both passive thermal forces and non-equilibrium active forces. We derive expressions for the fluctuation amplitudes, an effective temperature associated with active fluctuations, and the power spectral density for both the thermal and active fluctuations. We discuss an experimental assay that might enable measurement of these fluctuations to infer the properties of the active noise. Finally we discuss our results in the context of active membranes more generally and give an overview of some open questions in the field.


Subject(s)
Viscosity , Membranes
10.
Phys Rev Lett ; 125(1): 018101, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32678660

ABSTRACT

Motivated by the mechanics of dynamin-mediated membrane tube fission, we analyze the stability of fluid membrane tubes subjected to shear flow in azimuthal direction. We find a novel helical instability driven by the membrane shear flow which results in a nonequilibrium steady state for the tube fluctuations. This instability has its onset at shear rates that may be physiologically accessible under the action of dynamin and could also be probed using in vitro experiments on membrane nanotubes, e.g., using magnetic tweezers. We discuss how such an instability may play a role in the mechanism for dynamin-mediated membrane tube fission.

11.
ACS Macro Lett ; 9(8): 1081-1085, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-35653213

ABSTRACT

We use Brownian dynamics simulations and advanced topological profiling methods to characterize the out-of-equilibrium evolution of self-entanglement in linear polymers confined into nanochannels and under periodic compression. By introducing suitable observables, we can distinguish two main forms of entanglement that we term geometrical and topological. The latter is measured by the number of (essential) crossings of the physical knot detected after a suitable bridging of the chain termini. The former is instead measured as the average number of times a linear chain appears to cross itself when viewed under all projections and is irrespective of the physical knotted state. The key discovery of our work is that these two forms of entanglement are uncoupled and evolve with distinct dynamics. While geometrical entanglement is typically in phase with the compression-elongation cycles and it is primarily sensitive to its force f, the topological measure is mildly sensitive to cyclic modulation but strongly depends on both compression force f and duration k. The findings could assist the interpretation of experiments using fluorescence molecular tracers to track physical knots in polymers. Furthermore, we identify optimal regions in the experimentally controllable parameter space in which to obtain more/less topological and geometrical entanglement; this may help designing polymers with targeted topology.

12.
ACS Macro Lett ; 9(5): 743-748, 2020 May 19.
Article in English | MEDLINE | ID: mdl-33828901

ABSTRACT

The relationship between polymer topology and bulk rheology remains a key question in soft matter physics. Architecture-specific constraints (or threadings) are thought to control the dynamics of ring polymers in ring-linear blends, which thus affects the viscosity to range between that of the pure rings and a value larger, but still comparable to, that of the pure linear melt. Here we consider qualitatively different systems of linear and ring polymers, fused together in "chimeric" architectures. The simplest example of this family is a "tadpole"-shaped polymer, a single ring fused to the end of a single linear chain. We show that polymers with this architecture display a threading-induced dynamical transition that substantially slows chain relaxation. Our findings shed light on how threadings control dynamics and may inform design principles for chimeric polymers with topologically tunable bulk rheological properties.

13.
Proc Natl Acad Sci U S A ; 116(31): 15362-15367, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31315977

ABSTRACT

Collective motion is found in various animal systems, active suspensions, and robotic or virtual agents. This is often understood by using high-level models that directly encode selected empirical features, such as coalignment and cohesion. Can these features be shown to emerge from an underlying, low-level principle? We find that they emerge naturally under future state maximization (FSM). Here, agents perceive a visual representation of the world around them, such as might be recorded on a simple retina, and then move to maximize the number of different visual environments that they expect to be able to access in the future. Such a control principle may confer evolutionary fitness in an uncertain world by enabling agents to deal with a wide variety of future scenarios. The collective dynamics that spontaneously emerge under FSM resemble animal systems in several qualitative aspects, including cohesion, coalignment, and collision suppression, none of which are explicitly encoded in the model. A multilayered neural network trained on simulated trajectories is shown to represent a heuristic mimicking FSM. Similar levels of reasoning would seem to be accessible under animal cognition, demonstrating a possible route to the emergence of collective motion in social animals directly from the control principle underlying FSM. Such models may also be good candidates for encoding into possible future realizations of artificial "intelligent" matter, able to sense light, process information, and move.


Subject(s)
Motion , Motivation , Algorithms , Models, Theoretical , Neural Networks, Computer
14.
Phys Rev Lett ; 120(13): 138102, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29694218

ABSTRACT

We study a membrane tube with unidirectional ion pumps driving an osmotic pressure difference. A pressure-driven peristaltic instability is identified, qualitatively distinct from similar tension-driven Rayleigh-type instabilities on membrane tubes. We discuss how this instability could be related to the function and biogenesis of membrane bound organelles, in particular, the contractile vacuole complex. The unusually long natural wavelength of this instability is in agreement with that observed in cells.


Subject(s)
Cell Membrane/chemistry , Cell Membrane/metabolism , Models, Biological , Models, Chemical , Vacuoles/chemistry , Vacuoles/metabolism , Osmotic Pressure
15.
Soft Matter ; 13(19): 3480-3483, 2017 May 21.
Article in English | MEDLINE | ID: mdl-28466942

ABSTRACT

The spectral analysis of thermal fluctuations, or flickering, is a simple and non-invasive method widely used to determine the mechanical properties of artificial and biological lipid membranes. In its most common implementation, the position of the edge of a cell or vesicle is tracked from optical microscopy videos. However, a systematic disagreement with X-ray scattering and micromechanical manipulation data has brought into question the validity of the method. We present an improved analysis protocol that resolves these discrepancies by accounting for the finite vertical resolution of the optics used to image fluctuations.

16.
Polymers (Basel) ; 9(8)2017 Aug 08.
Article in English | MEDLINE | ID: mdl-30971026

ABSTRACT

Elucidating the physics of a concentrated suspension of ring polymers, or of an ensemble of ring polymers in a complex environment, is an important outstanding question in polymer physics. Many of the characteristic features of these systems arise due to topological interactions between polymers, or between the polymers and the environment, and it is often challenging to describe this quantitatively. Here we review recent research which suggests that a key role is played by inter-ring threadings (or penetrations), which become more abundant as the ring size increases. As we discuss, the physical consequences of such threadings are far-reaching: for instance, they lead to a topologically-driven glassy behaviour of ring polymer melts under pinning perturbations, while they can also account for the shape of experimentally observed patterns in two-dimensional gel electrophoresis of DNA knots.

17.
Phys Rev Lett ; 116(23): 239901, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27341265

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.115.198101.

18.
Proc Natl Acad Sci U S A ; 113(19): 5195-200, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27118847

ABSTRACT

The static and dynamic properties of ring polymers in concentrated solutions remains one of the last deep unsolved questions in polymer physics. At the same time, the nature of the glass transition in polymeric systems is also not well understood. In this work, we study a novel glass transition in systems made of circular polymers by exploiting the topological constraints that are conjectured to populate concentrated solutions of rings. We show that such rings strongly interpenetrate through one another, generating an extensive network of topological interactions that dramatically affects their dynamics. We show that a kinetically arrested state can be induced by randomly pinning a small fraction of the rings. This occurs well above the classical glass transition temperature at which microscopic mobility is lost. Our work both demonstrates the existence of long-lived inter-ring penetrations and realizes a novel, topologically induced, glass transition.

19.
PLoS One ; 10(12): e0143470, 2015.
Article in English | MEDLINE | ID: mdl-26656912

ABSTRACT

The formation of dynamical clusters of proteins is ubiquitous in cellular membranes and is in part regulated by the recycling of membrane components. We show, using stochastic simulations and analytic modeling, that the out-of-equilibrium cluster size distribution of membrane components undergoing continuous recycling is strongly influenced by lateral confinement. This result has significant implications for the clustering of plasma membrane proteins whose mobility is hindered by cytoskeletal "corrals" and for protein clustering in cellular organelles of limited size that generically support material fluxes. We show how the confinement size can be sensed through its effect on the size distribution of clusters of membrane heterogeneities and propose that this could be regulated to control the efficiency of membrane-bound reactions. To illustrate this, we study a chain of enzymatic reactions sensitive to membrane protein clustering. The reaction efficiency is found to be a non-monotonic function of the system size, and can be optimal for sizes comparable to those of cellular organelles.


Subject(s)
Cell Membrane/chemistry , Cell Membrane/enzymology , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Models, Biological , Cell Membrane/metabolism , Cell Physiological Phenomena , Cluster Analysis , Membrane Microdomains/metabolism , Models, Chemical , Stochastic Processes
20.
Phys Rev Lett ; 115(19): 198101, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26588417

ABSTRACT

The function of membrane-embedded proteins such as ion channels depends crucially on their conformation. We demonstrate how conformational changes in asymmetric membrane proteins may be inferred from measurements of their diffusion. Such proteins cause local deformations in the membrane, which induce an extra hydrodynamic drag on the protein. Using membrane tension to control the magnitude of the deformations, and hence the drag, measurements of diffusivity can be used to infer-via an elastic model of the protein-how conformation is changed by tension. Motivated by recent experimental results [Quemeneur et al., Proc. Natl. Acad. Sci. U.S.A. 111, 5083 (2014)], we focus on KvAP, a voltage-gated potassium channel from Aeropyrum pernix. The conformation of KvAP is found to change considerably due to tension, with its "walls," where the protein meets the membrane, undergoing significant angular strains. The torsional stiffness is determined to be 26.8k(B)T per radian at room temperature. This has implications for both the structure and the function of such proteins in the environment of a tension-bearing membrane.


Subject(s)
Models, Chemical , Potassium Channels, Voltage-Gated/chemistry , Aeropyrum/chemistry , Aeropyrum/metabolism , Molecular Probe Techniques , Molecular Probes/chemistry , Potassium Channels, Voltage-Gated/metabolism , Protein Conformation , Thermodynamics , Torque
SELECTION OF CITATIONS
SEARCH DETAIL
...