Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
mSphere ; : e0018124, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39297639

ABSTRACT

Several studies reported alterations of the human gut microbiota (GM) during COVID-19. To evaluate the potential role of the GM as an early predictor of COVID-19 at disease onset, we analyzed gut microbial samples of 315 COVID-19 patients that differed in disease severity. We observed significant variations in microbial diversity and composition associated with increasing disease severity, as the reduction of short-chain fatty acid producers such as Faecalibacterium and Ruminococcus, and the growth of pathobionts as Anaerococcus and Campylobacter. Notably, we developed a multi-class machine-learning classifier, specifically a convolutional neural network, which achieved an 81.5% accuracy rate in predicting COVID-19 severity based on GM composition at disease onset. This achievement highlights its potential as a valuable early biomarker during the first week of infection. These findings offer promising insights into the intricate relationship between GM and COVID-19, providing a potential tool for optimizing patient triage and streamlining healthcare during the pandemic.IMPORTANCEEfficient patient triage for COVID-19 is vital to manage healthcare resources effectively. This study underscores the potential of gut microbiota (GM) composition as an early biomarker for COVID-19 severity. By analyzing GM samples from 315 patients, significant correlations between microbial diversity and disease severity were observed. Notably, a convolutional neural network classifier was developed, achieving an 81.5% accuracy in predicting disease severity based on GM composition at disease onset. These findings suggest that GM profiling could enhance early triage processes, offering a novel approach to optimizing patient management during the pandemic.

2.
EPMA J ; 15(3): 471-489, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39239112

ABSTRACT

Background: Insomnia persists as a prevalent sleep disorder among middle-aged and older adults, significantly impacting quality of life and increasing susceptibility to age-related diseases. It is classified into objective insomnia (O-IN) and paradoxical insomnia (P-IN), where subjective and objective sleep assessments diverge. Current treatment regimens for both patient groups yield unsatisfactory outcomes. Consequently, investigating the neurophysiological distinctions between P-IN and O-IN is imperative for devising novel precision interventions aligned with primary prediction, targeted prevention, and personalized medicine (PPPM) principles.Working hypothesis and methodology.Given the emerging influence of gut microbiota (GM) on sleep physiology via the gut-brain axis, our study focused on characterizing the GM profiles of a well-characterized cohort of 96 Italian postmenopausal women, comprising 54 insomniac patients (18 O-IN and 36 P-IN) and 42 controls, through 16S rRNA amplicon sequencing. Associations were explored with general and clinical history, sleep patterns, stress, hematobiochemical parameters, and nutritional patterns. Results: Distinctive GM profiles were unveiled between O-IN and P-IN patients. O-IN patients exhibited prominence in the Coriobacteriaceae family, including Collinsella and Adlercreutzia, along with Erysipelotrichaceae, Clostridium, and Pediococcus. Conversely, P-IN patients were mainly discriminated by Bacteroides, Staphylococcus, Carnobacterium, Pseudomonas, and respective families, along with Odoribacter. Conclusions: These findings provide valuable insights into the microbiota-mediated mechanism of O-IN versus P-IN onset. GM profiling may thus serve as a tailored stratification criterion, enabling the identification of women at risk for specific insomnia subtypes and facilitating the development of integrated microbiota-based predictive diagnostics, targeted prevention, and personalized therapies, ultimately enhancing clinical effectiveness. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-024-00369-1.

3.
Sci Rep ; 14(1): 19575, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39179705

ABSTRACT

The high salt-fed stroke-prone spontaneously hypertensive rat (SHRSP) is a suitable tool to study the mechanisms underlying stroke pathogenesis. Salt intake modifies the gut microbiota (GM) in rats and humans and alterations of the GM have previously been associated with increased stroke occurrence. We aimed to characterize the GM profile in SHRSPs fed a high-salt stroke-permissive diet (Japanese diet, JD), compared to the closely related stroke-resistant control (SHRSR), to identify possible changes associated with stroke occurrence. SHRSPs and SHRSRs were fed a regular diet or JD for 4 weeks (short-term, ST) or a maximum of 10 weeks (long-term, LT). Stroke occurred in SHRSPs on JD-LT, preceded by proteinuria and diarrhoea. The GM of JD-fed SHRSPs underwent early and late compositional changes compared to SHRSRs. An overrepresentation of Streptococcaceae and an underrepresentation of Lachnospiraceae were observed in SHRSPs JD-ST, while in SHRSPs JD-LT short-chain fatty acid producers, e.g. Lachnobacterium and Faecalibacterium, decreased and pathobionts such as Coriobacteriaceae and Desulfovibrio increased. Occludin gene expression behaved differently in SHRSPs and SHRSRs. Calprotectin levels were unchanged. In conclusion, the altered GM in JD-fed SHRSPs may be detrimental to gut homeostasis and contribute to stroke occurrence.


Subject(s)
Gastrointestinal Microbiome , Rats, Inbred SHR , Sodium Chloride, Dietary , Stroke , Animals , Gastrointestinal Microbiome/drug effects , Stroke/microbiology , Rats , Sodium Chloride, Dietary/adverse effects , Male , Hypertension/microbiology
5.
Hematol Oncol ; 42(5): e3301, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39104142

ABSTRACT

Biomarkers for immune checkpoint inhibitors (ICIs) response and resistance include PD-L1 expression and other environmental factors, among which the gut microbiome (GM) is gaining increasing interest especially in lymphomas. To explore the potential role of GM in this clinical issue, feces of 30 relapsed/refractory lymphoma (Hodgkin and primary mediastinal B-cell lymphoma) patients undergoing ICIs were collected from start to end of treatment (EoT). GM was profiled through Illumina, that is, 16S rRNA sequencing, and subsequently processed through a bioinformatics pipeline. The overall response rate to ICIs was 30.5%, with no association between patients clinical characteristics and response/survival outcomes. Regarding GM, responder patients showed a peculiar significant enrichment of Lachnospira, while non-responder ones showed higher presence of Enterobacteriaceae (at baseline and maintained till EoT). Recognizing patient-related factors that may influence response to ICIs is becoming critical to optimize the treatment pathway of heavily pretreated, young patients with a potentially long-life expectancy. These preliminary results indicate potential early GM signatures of ICIs response in lymphoma, which could pave the way for future research to improve patients prognosis with new adjuvant strategies.


Subject(s)
Gastrointestinal Microbiome , Immune Checkpoint Inhibitors , Humans , Gastrointestinal Microbiome/drug effects , Immune Checkpoint Inhibitors/therapeutic use , Male , Female , Middle Aged , Adult , Aged , Lymphoma/drug therapy , Lymphoma/microbiology , Young Adult , Prognosis , Treatment Outcome
6.
Nutrients ; 16(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39064648

ABSTRACT

The complex interactions between intestinal microbiota and metabolic disorders are well-documented, with implications for glucose metabolism, energy expenditure, and intestinal permeability. Prebiotics induce beneficial changes in gut microbiota composition in prediabetes, while postbiotics can enhance gut barrier function, complementing each other to improve glucose metabolism and insulin sensitivity. This study investigated the effects of a 12-week dietary fibre (DF) supplement on gut health, metabolic function, and diet. The supplement contained konjac glucomannan (KGM), galacto-oligosaccharides (GOSs), and exopolysaccharides (EPSs) from Bifidobacterium breve. In a randomised, double-blind, placebo-controlled, parallel-group clinical trial, 53 prediabetic volunteers were randomly assigned to either a daily DF supplement (YMETA) or a placebo (cellulose microcrystalline) for 12 weeks, followed by a 4-week follow-up. Measurements included gut microbiota composition, glycated haemoglobin (HbA1c), fasting plasma glucose (FPG), plasma lipids, anthropometry, body composition, blood pressure, and dietary intake. The intervention group showed a significant increase in alpha diversity and butyrate-producing bacteria, with reductions in HbA1c and FPG levels below prediabetes thresholds. No significant changes were observed in the placebo group. This study suggests that manipulating the human gut microbiome through dietary interventions could be a promising therapeutic approach to managing prediabetes and preventing or delaying diabetes.


Subject(s)
Bifidobacterium breve , Dietary Fiber , Gastrointestinal Microbiome , Glycated Hemoglobin , Mannans , Oligosaccharides , Prebiotics , Prediabetic State , Humans , Gastrointestinal Microbiome/drug effects , Double-Blind Method , Prediabetic State/therapy , Prediabetic State/diet therapy , Prebiotics/administration & dosage , Glycated Hemoglobin/metabolism , Male , Female , Oligosaccharides/administration & dosage , Middle Aged , Dietary Fiber/pharmacology , Dietary Fiber/administration & dosage , Adult , Mannans/pharmacology , Blood Glucose/metabolism , Dietary Supplements , Galactose
7.
iScience ; 27(7): 110194, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38989465

ABSTRACT

Aiming to shed light on the biology of wild ruminants, we investigated the gut microbiome seasonal dynamics of the Alpine ibex (Capra ibex) from the Central Italian Alps. Feces were collected in spring, summer, and autumn during non-invasive sampling campaigns. Samples were analyzed by 16S rRNA amplicon sequencing, shotgun metagenomics, as well as targeted and untargeted metabolomics. Our findings revealed season-specific compositional and functional profiles of the ibex gut microbiome that may allow the host to adapt to seasonal changes in available forage, by fine-tuning the holobiont catabolic layout to fully exploit the available food. Besides confirming the importance of the host-associated microbiome in providing the phenotypic plasticity needed to buffer dietary changes, we obtained species-level genome bins and identified minimal gut microbiome community modules of 11-14 interacting strains as a possible microbiome-based solution for the bioconversion of lignocellulose to high-value compounds, such as volatile fatty acids.

8.
J Transl Med ; 22(1): 631, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970018

ABSTRACT

BACKGROUND: Wnt/ß-catenin signalling impairment accounts for 85% of colorectal cancers (CRCs), including sporadic and familial adenomatous polyposis (FAP) settings. An altered PI3K/mTOR pathway and gut microbiota also contribute to CRC carcinogenesis. We studied the interplay between the two pathways and the microbiota composition within each step of CRC carcinogenesis. METHODS: Proteins and target genes of both pathways were analysed by RT-qPCR and IHC in tissues from healthy faecal immunochemical test positive (FIT+, n = 17), FAP (n = 17) and CRC (n = 15) subjects. CRC-related mutations were analysed through NGS and Sanger. Oral, faecal and mucosal microbiota was profiled by 16 S rRNA-sequencing. RESULTS: We found simultaneous hyperactivation of Wnt/ß-catenin and PI3K/mTOR pathways in FAP-lesions compared to CRCs. Wnt/ß-catenin molecular markers positively correlated with Clostridium_sensu_stricto_1 and negatively with Bacteroides in FAP faecal microbiota. Alistipes, Lachnospiraceae, and Ruminococcaceae were enriched in FAP stools and adenomas, the latter also showing an overabundance of Lachnoclostridium, which positively correlated with cMYC. In impaired-mTOR-mutated CRC tissues, p-S6R correlated with Fusobacterium and Dialister, the latter also confirmed in the faecal-ecosystem. CONCLUSIONS: Our study reveals an interplay between Wnt/ß-catenin and PI3K/mTOR, whose derangement correlates with specific microbiota signatures in FAP and CRC patients, and identifies new potential biomarkers and targets to improve CRC prevention, early adenoma detection and treatment.


Subject(s)
Carcinogenesis , Colorectal Neoplasms , Phosphatidylinositol 3-Kinases , TOR Serine-Threonine Kinases , Wnt Signaling Pathway , Humans , Colorectal Neoplasms/microbiology , TOR Serine-Threonine Kinases/metabolism , Pilot Projects , Phosphatidylinositol 3-Kinases/metabolism , Male , Female , Adenomatous Polyposis Coli/microbiology , Adenomatous Polyposis Coli/genetics , Middle Aged , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism , Feces/microbiology , Gastrointestinal Microbiome , Aged , Adult , Mutation/genetics , Microbiota
9.
Sci Adv ; 10(25): eadk9117, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905343

ABSTRACT

The microbiome plays a key role in the health of all metazoans. Whether and how the microbiome favors the adaptation processes of organisms to extreme conditions, such as those of Antarctica, which are incompatible with most metazoans, is still unknown. We investigated the microbiome of three endemic and widespread species of Antarctic polychaetes: Leitoscoloplos geminus, Aphelochaeta palmeri, and Aglaophamus trissophyllus. We report here that these invertebrates contain a stable bacterial core dominated by Meiothermus and Anoxybacillus, equipped with a versatile genetic makeup and a unique portfolio of proteins useful for coping with extremely cold conditions as revealed by pangenomic and metaproteomic analyses. The close phylosymbiosis between Meiothermus and Anoxybacillus and these Antarctic polychaetes indicates a connection with their hosts that started in the past to support holobiont adaptation to the Antarctic Ocean. The wide suite of bacterial cryoprotective proteins found in Antarctic polychaetes may be useful for the development of nature-based biotechnological applications.


Subject(s)
Freezing , Microbiota , Polychaeta , Polychaeta/microbiology , Animals , Antarctic Regions , Phylogeny , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
11.
Clin Nutr ; 43(6): 1331-1342, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677044

ABSTRACT

OBJECTIVE: Fecal microbiota was investigated in adult patients with chronic intestinal failure (CIF) due to short bowel syndrome (SBS) with jejunocolonic anastomosis (SBS-2). Few or no data are available on SBS with jejunostomy (SBS-1) and CIF due to intestinal dysmotility (DYS) or mucosal disease (MD). We profiled the fecal microbiota of various pathophysiological mechanisms of CIF. METHODS: Cross-sectional study on 61 adults with CIF (SBS-1 30, SBS-2 17, DYS 8, MD 6). Fecal samples were collected and profiled by 16S rRNA amplicon sequencing. Healthy controls (HC) were selected from pre-existing cohorts, matched with patients by sex and age. RESULTS: Compared to HC, SBS-1, SBS-2 and MD patients showed lower alpha diversity; no difference was found for DYS. In beta diversity analysis, SBS-1, SBS-2 and DYS groups segregated from HC and from each other. Taxonomically, the CIF groups differed from HC even at the phylum level. In particular, CIF patients' microbiota was dominated by Lactobacillaceae and Enterobacteriaceae, while depleted in typical health-associated taxa belonging to Lachnospiraceae and Ruminococcaceae. Notably, compositional peculiarities of the CIF groups emerged. Furthermore, in the SBS groups, the microbiota profile differed according to the amount of parenteral nutrition required and the duration of CIF. CONCLUSIONS: CIF patients showed marked intestinal dysbiosis with microbial signatures specific to the pathophysiological mechanism of CIF as well as to the severity and duration of SBS.


Subject(s)
Feces , Gastrointestinal Microbiome , Short Bowel Syndrome , Humans , Male , Female , Cross-Sectional Studies , Middle Aged , Feces/microbiology , Adult , Short Bowel Syndrome/microbiology , Short Bowel Syndrome/physiopathology , Chronic Disease , Aged , Intestinal Failure/microbiology , RNA, Ribosomal, 16S/genetics
12.
iScience ; 27(3): 109211, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38433907

ABSTRACT

The human gut microbiome is losing biodiversity, due to the "microbiome modernization process" that occurs with urbanization. To keep track of it, here we applied shotgun metagenomics to the gut microbiome of the Baka, a group of forager-horticulturalists from Cameroon, who combine hunting and gathering with growing a few crops and working for neighboring Bantu-speaking farmers. We analyzed the gut microbiome of individuals with different access to and use of wild plant and processed foods, to explore the variation of their gut microbiome along the cline from hunter-gatherer to agricultural subsistence patterns. We found that 26 species-level genome bins from our cohort were pivotal for the degradation of the wild plant food substrates. These microbes include Old Friend species and are encoded for genes that are no longer present in industrialized gut microbiome. Our results highlight the potential relevance of these genes to human biology and health, in relation to lifestyle.

13.
Anim Microbiome ; 6(1): 17, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555432

ABSTRACT

BACKGROUND: Antimicrobial resistance has been identified as a major threat to global health. The pig food chain is considered an important source of antimicrobial resistance genes (ARGs). However, there is still a lack of knowledge on the dispersion of ARGs in pig production system, including the external environment. RESULTS: In the present study, we longitudinally followed one swine farm located in Italy from the weaning phase to the slaughterhouse to comprehensively assess the diversity of ARGs, their diffusion, and the bacteria associated with them. We obtained shotgun metagenomic sequences from 294 samples, including pig feces, farm environment, soil around the farm, wastewater, and slaughterhouse environment. We identified a total of 530 species-level genome bins (SGBs), which allowed us to assess the dispersion of microorganisms and their associated ARGs in the farm system. We identified 309 SGBs being shared between the animals gut microbiome, the internal and external farm environments. Specifically, these SGBs were characterized by a diverse and complex resistome, with ARGs active against 18 different classes of antibiotic compounds, well matching antibiotic use in the pig food chain in Europe. CONCLUSIONS: Collectively, our results highlight the urgency to implement more effective countermeasures to limit the dispersion of ARGs in the pig food systems and the relevance of metagenomics-based approaches to monitor the spread of ARGs for the safety of the farm working environment and the surrounding ecosystems.

14.
JHEP Rep ; 6(4): 101039, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38524669

ABSTRACT

Background & Aims: The aim of this study was to investigate gut microbiome (GM) dynamics in relation to carbapenem-resistant Enterobacterales (CRE) colonization, CRE infection, and non-CRE infection development within 2 months after liver transplant (LT). Methods: A single-center, prospective study was performed in patients undergoing LT from November 2018 to January 2020. The GM was profiled through 16S rRNA amplicon sequencing of a rectal swab taken on the day of transplantation, and fecal samples were collected weekly until 1 month after LT. A subset of samples was subjected to shotgun metagenomics, including resistome dynamics. The primary endpoint was to explore changes in the GM in the following groups: (1) CRE carriers developing CRE infection (CRE_I); (2) CRE carriers not developing infection (CRE_UI); (3) non-CRE carriers developing microbial infection (INF); and (4) non-CRE carriers not developing infection (NEG). Results: Overall, 97 patients were enrolled, and 91 provided fecal samples. Of these, five, nine, 22, and 55 patients were classified as CRE_I, CRE_UI, INF, and NEG, respectively. CRE_I patients showed an immediate and sustained post-LT decrease in alpha diversity, with depletion of the GM structure and gradual over-representation of Klebsiella and Enterococcus. The proportions of Klebsiella were significantly higher in CRE_I patients than in NEG patients even before LT, serving as an early marker of subsequent CRE infection. CRE_UI patients had a more stable and diverse GM, whose compositional dynamics tended to overlap with those of NEG patients. Conclusions: GM profiling before LT could improve patient stratification and risk prediction and guide early GM-based intervention strategies to reduce infectious complications and improve overall prognosis. Impact and implications: Little is known about the temporal dynamics of gut microbiome (GM) in liver transplant recipients associated with carbapenem-resistant Enterobacterales (CRE) colonization and infection. The GM structure and functionality of patients colonized with CRE and developing infection appeared to be distinct compared with CRE carriers without infection or patients with other microbial infection or no infection and CRE colonization. Higher proportions of antimicrobial-resistant pathogens and poor representation of bacteria and metabolic pathways capable of promoting overall host health were observed in CRE carriers who developed infection, even before liver transplant. Therefore, pretransplant GM profiling could improve patient stratification and risk prediction and guide early GM-based intervention strategies to reduce infectious complications and improve overall prognosis.

15.
Sci Total Environ ; 914: 169902, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38185149

ABSTRACT

To investigate the possibility of phosphorus (P) recovery from marine sediment and explore the role of the carbon: nitrogen ratio in affecting the internal P release under anaerobic conditions, we experimented with the external addition of carbon (acetic acid and glucose) and ammonia nitrogen (NH4-N) to expose P release mechanisms. The 24-day anaerobic incubations were conducted with four different carbon: nitrogen dosing groups including no NH4-N addition and COD/N ratios of 100, 50, and 10. The P release showed that extra NH4-N loading significantly suppressed the decomposition of P (p < 0.05) from the marine sediment, the maximum P release was 4.07 mg/L and 7.14 mg/L in acetic acid- and glucose-fed systems, respectively, without extra NH4-N addition. Additionally, the results exhibited that the imbalance of carbon: nitrogen not only failed to induce the production of organic P mineralization enzyme (alkaline phosphatase) in the sediment but also suppressed its activity under anaerobic conditions. The highest enzyme activity was observed in the group without additional NH4-N dosage, with rates of 1046.4 mg/(kg∙h) in the acetic acid- and 967.8 mg/(kg∙h) in the glucose-fed system, respectively. Microbial data analysis indicated that a decrease in the abundance of P release-regulating bacteria, including polyphosphate-accumulating organisms (Rhodobacteraceae) and sulfate-reducing bacteria (Desulfosarcinaceae), was observed in the high NH4-N addition groups. The observed reduction in enzyme activity and suppression of microbial activity mentioned above could potentially account for the inhibited P decomposition in the presence of high NH4-N addition under anaerobic conditions. The produced P-enriched solution from the bioreactors may offer a promising source for future recovery endeavors.


Subject(s)
Carbon , Nitrogen , Anaerobiosis , Phosphorus , Bioreactors , Geologic Sediments , Acetates , Glucose
16.
Sci Total Environ ; 912: 169086, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38056648

ABSTRACT

Poultry farms are hotspots for the development and spread of antibiotic resistance genes (ARGs), due to high stocking densities and extensive use of antibiotics, posing a threat of spread and contagion to workers and the external environment. Here, we applied shotgun metagenome sequencing to characterize the gut microbiome and resistome of poultry, workers and their households - also including microbiomes from the internal and external farm environment - in three different farms in Italy during a complete rearing cycle. Our results highlighted a relevant overlap among the microbiomes of poultry, workers, and their families (gut and skin), with clinically relevant ARGs and associated mobile elements shared in both poultry and human samples. On a finer scale, the reconstruction of species-level genome bins (SGBs) allowed us to delineate the dynamics of microorganism and ARGs dispersion from farm systems. We found the associations with worker microbiomes representing the main route of ARGs dispersion from poultry to human populations. Collectively, our findings clearly demonstrate the urgent need to implement more effective procedures to counteract ARGs dispersion from poultry food systems and the relevance of metagenomics-based metacommunity approaches to monitor the ARGs dispersion process for the safety of the working environment on farms.


Subject(s)
Microbiota , Poultry , Animals , Humans , Farms , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial
17.
Methods Mol Biol ; 2732: 23-28, 2024.
Article in English | MEDLINE | ID: mdl-38060115

ABSTRACT

ViromeScan is an innovative metagenomic analysis tool that allows characterizing the taxonomy of viral communities from raw data of metagenomics sequencing, efficiently denoising samples from reads of other microorganisms. This means that users can use the same shotgun metagenomic sequencing data to fully characterize complex microbial ecosystems, including bacteria and viruses. Here we describe the analysis procedure with some examples, illustrating the processes computed by ViromeScan from raw data to the final output.


Subject(s)
Software , Viruses , Ecosystem , Whole Genome Sequencing/methods , Metagenome , Viruses/genetics , Metagenomics/methods , High-Throughput Nucleotide Sequencing/methods , Genome, Viral
18.
Microbiome Res Rep ; 2(4): 32, 2023.
Article in English | MEDLINE | ID: mdl-38045924

ABSTRACT

The microbiota-gut-brain axis refers to the intricate bidirectional communication between commensal microorganisms residing in the digestive tract and the central nervous system, along neuroendocrine, metabolic, immune, and inflammatory pathways. This axis has been suggested to play a role in several neurological disorders, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, and epilepsy, paving the way for microbiome-based intervention strategies for the mitigation and treatment of symptoms. Epilepsy is a multifaceted neurological condition affecting more than 50 million individuals worldwide, 30% of whom do not respond to conventional pharmacological therapies. Among the first-hand microbiota modulation strategies, nutritional interventions represent an easily applicable option in both clinical and home settings. In this narrative review, we summarize the mechanisms underlying the microbiota-gut-brain axis involvement in epilepsy, discuss the impact of antiepileptic drugs on the gut microbiome, and then the impact of a particular dietary pattern, the ketogenic diet, on the microbiota-gut-brain axis in epileptic patients. The investigation of the microbiota response to non-pharmacological therapies is an ever-expanding field with the potential to allow the design of increasingly accessible and successful intervention strategies.

20.
Microbiome Res Rep ; 2(3): 16, 2023.
Article in English | MEDLINE | ID: mdl-38046820

ABSTRACT

Although research on the role of the gut microbiota (GM) in human health has sharply increased in recent years, what a "healthy" gut microbiota is and how it responds to major stressors is still difficult to establish. In particular, anticancer chemotherapy is known to have a drastic impact on the microbiota structure, potentially hampering its recovery with serious long-term consequences for patients' health. However, the distinguishing features of gut microbiota recovery and non-recovery processes are not yet known. In this narrative review, we first investigated how gut microbiota layouts are affected by anticancer chemotherapy and identified potential gut microbial recovery signatures. Then, we discussed microbiome-based intervention strategies aimed at promoting resilience, i.e., the rapid and complete recovery of a healthy gut microbial network associated with a better prognosis after such high-impact pharmacological treatments.

SELECTION OF CITATIONS
SEARCH DETAIL