Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Histochem ; 66(3)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35730574

ABSTRACT

Osteosarcoma (OS) is a kind of malignant tumor originating from mesenchymal tissue Bone mesenchymal stem cells-derived extracellular vesicles (BMSCs-EVs) can play important roles in OS. This study investigated the mechanism of BMSCs-EVs on OS. BMSC surface antigens and adipogenic and osteogenic differentiation were detected by flow cytometry, and oil red O and alizarin red staining. EVs were isolated from BMSCs by differential centrifugation and identified by transmission electron microscopy, nanoparticle tracking analysis, and Western blot (WB). miR-206 and neurensin-2 (NRSN2) levels in human osteoblast hFOB 1.19 or OS cells (143B, MG-63, Saos2, HOS) were detected by RT-qPCR. Human OS cells with lower miR-206 levels were selected and treated with BMSCs-EVs or pSUPER-NRSN2. The uptake of EVs by 143B cells, cell proliferation, apoptosis, invasion, and migration were detected by immunofluorescence, 5-ethynyl-2'-deoxyuridine (EdU) and colony formation assays, flow cytometry, scratch test, and transwell assays. The binding sites between miR-206 and NRSN2 were predicted by Starbase database and verified by dual-luciferase assay. The OS xenograft model was established and treated by BMSCs-EVs. Tumor growth rate and volume, cell proliferation, and p-ERK1/2, ERK1/2, and Bcl-xL levels were detected by vernier caliper, immunohistochemistry, and WB. BMSCs-EVs were successfully extracted. miR-206 was diminished and NRSN2 was promoted in OS cells. BMSCs-EVs inhibited proliferation, migration, and invasion, and promoted apoptosis of OS cells. BMSCs-EVs carried miR-206 into OS cells. Inhibition of miR-206 in EVs partially reversed the inhibitory effect of EVs on malignant behaviors of OS cells. miR-206 targeted NRSN2. Overexpression of NRSN2 reversed the inhibitory effect of EVs on OS cells. NRSN2 activated the ERK1/2-Bcl-xL pathway. BMSC-EVs inhibited OS growth in vivo. In summary, BMSC-EVs targeted NRSN2 and inhibited the ERK1/2-Bcl-xL pathway by carrying miR-206 into OS cells, thus inhibiting OS progression.


Subject(s)
Bone Neoplasms , Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , Osteosarcoma , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Humans , MAP Kinase Signaling System , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Osteogenesis , Osteosarcoma/metabolism , Osteosarcoma/pathology , Signal Transduction
2.
Biosci Rep ; 39(11)2019 11 29.
Article in English | MEDLINE | ID: mdl-28442599

ABSTRACT

Dysregulation of miRNAs has been shown to contribute to multiple tumorigenic processes, as well as to correlate with tumour progression and prognosis. miR-199a has been shown to be dysregulated in multiple tumour types. However, the association between miR-199a and the chemoresistance features of osteosarcoma are not well understood, the target genes for miR-199a and the regulatory mechanisms are also unknown. In the present study, we demonstrated that miR-199a is expressed at low levels in osteosarcoma cells and patient samples. By the selection and establishment of cisplatin resistant osteosarcoma cell line, we observed a correlation between miR-199a and cisplatin resistance in osteosarcoma cells: resistant cells exhibit attenuated miR-199a expressions and exogenous overexpression of miR-199a sensitizes osteosarcoma cells to cisplatin. Moreover, we identified HIF-1α as a direct target for miR-199a. Intriguingly, cisplatin resistant osteosarcoma cells display significantly elevated HIF-1α expression under hypoxia. We report here overexpression of miR-199a resensitizes cisplatin resistant cells to cisplatin through inhibition of HIF-1α in vitro and in vivo. Finally, by analysing the clinical osteosarcoma patient samples, we demonstrate a reverse correlation between miR-199a and HIF-1α mRNAs. Our study will provide mechanisms for the miRNA-mediated anticancer therapy and miR-199a may be considered a promising therapeutic agent for osteosarcoma patients who fail to respond to conventional chemotherapy.


Subject(s)
Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , MicroRNAs/genetics , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Animals , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Down-Regulation/genetics , Humans , Hypoxia/genetics , Mice , Mice, Nude , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...