Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-22474515

ABSTRACT

Introduction. Several studies demonstrated that anti-inflammatory remedies exhibit excellent anti-neoplastic properties. An extract of Pluchea odorata (Asteraceae), which is used for wound healing and against inflammatory conditions, was fractionated and properties correlating to anti-neoplastic and wound healing effects were separated. Methods. Up to six fractionation steps using silica gel, Sephadex columns, and distinct solvent systems were used, and eluted fractions were analysed by thin layer chromatography, apoptosis, and proliferation assays. The expression of oncogenes and proteins regulating cell migration was investigated by immunoblotting after treating HL60 cells with the most active fractions. Results. Sequential fractionations enriched anti-neoplastic activities which suppressed oncogene expression of JunB, c-Jun, c-Myc, and Stat3. Furthermore, a fraction (F4.6.3) inducing or keeping up expression of the mobility markers MYPT, ROCK1, and paxillin could be separated from another fraction (F4.3.7), which inhibited these markers. Conclusions. Wound healing builds up scar or specific tissue, and hence, compounds enhancing cell migration support this process. In contrast, successful anti-neoplastic therapy combats tumour progression, and thus, suppression of cell migration is mandatory.

2.
Front Biosci (Elite Ed) ; 3(4): 1326-36, 2011 06 01.
Article in English | MEDLINE | ID: mdl-21622139

ABSTRACT

Natural products continue to represent the main source for therapeutics, and ethnopharmacological remedies from high biodiversity regions are a rich source for the development of novel drugs. Hence, in our attempt to find new anti-neoplastic activities we focused on ethno-medicinal plants of the Maya, who live in the world's third richest area in vascular plant species. Pluchea odorata (Asteraceae) is traditionally used for the treatment of various inflammatory disorders and recently, the in vitro anti-cancer activities of different extracts of this plant were described. Here, we present the results of bioassay-guided fractionations of the dichloromethane extract of P. odorata that aimed to enrich the active principles. The separation resulted in fractions which showed the dissociation of two distinct anti-neoplastic mechanisms; firstly, a genotoxic effect that was accompanied by tubulin polymerization, cell cycle arrest, and apoptosis (fraction F2/11), and secondly, an effect that interfered with the orchestrated expression of Cyclin D1, Cdc25A, and Cdc2 and that also led to cell cycle arrest and apoptosis (fraction F3/4). Thus, the elimination of generally toxic properties and beyond that the development of active principles of P. odorata, which disturb cancer cell cycle progression, are of interest for potential future therapeutic concepts against proliferative diseases.


Subject(s)
Antineoplastic Agents, Phytogenic/isolation & purification , Asteraceae/chemistry , Plant Extracts/isolation & purification , Blotting, Western , Cell Death/drug effects , Cell Line, Tumor , Humans
3.
Int J Mol Med ; 24(4): 513-21, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19724892

ABSTRACT

The Aracea Anthurium schlechtendalii and Syngonium podophyllum are traditional remedies for the treatment of severe and chronic inflammatory conditions. We cross-examined these plants regarding their anti-neoplastic properties, because several anti-inflammatory molecular targets are common for both pathologic conditions due to similar signalling pathways. Two malignant cell lines, HL-60 and MCF-7, were treated with increasing concentrations of plant extracts of increasing polarity. The potential of the extracts to inhibit the cell cycle and to induce cell death was investigated, because these are relevant endpoints to assess the anti-cancer potential in vitro and the protein expression and cell cycle distribution upon exposure to the strongest extract was analysed. Extracts from S. podophyllum were rather ineffective, but the freeze-dried (but not air-dried) roots of A. schlechtendalii exhibited strong growth inhibitory and apoptosis-inducing properties. In HL-60 cells 50% proliferation inhibition was achieved by 1.7 microg dichloromethane extract/ml medium and correlated with the activation of Chk2, down-regulation of Cdc25A, suppression of cyclin D1 level, and transient induction of p21. This extract efficiently triggered apoptosis, which was confirmed by caspase 3 activation. The polymerisation of alpha-tubulin and its subsequent degradation that depleted the cells from the G2/M contributed to apoptosis induction, because proper spindle-formation during mitosis is mandatory for survival. In conclusion, we demonstrated that A. schlechtendalii root extract specifically targeted carcinogenic mechanisms, because Cdc25A and cyclin D1 are oncogenes that are frequently overexpressed in a variety of cancer entities and further, this extract affected microtubule function reminiscent of taxol.


Subject(s)
Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis , Araceae/chemistry , Plant Extracts/pharmacology , Blotting, Western , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Checkpoint Kinase 2 , Cyclin D1/metabolism , Flow Cytometry , HL-60 Cells , Humans , Plant Extracts/chemistry , Protein Serine-Threonine Kinases/metabolism , cdc25 Phosphatases/metabolism
4.
Int J Oncol ; 34(4): 1117-28, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19287970

ABSTRACT

Many traditional healing plants successfully passed several hundred years of empirical testing against specific diseases and thereby demonstrating that they are well tolerated in humans. Although quite a few ethno-pharmacological plants are applied against a variety of conditions there are still numerous plants that have not been cross-tested in diseases apart from the traditional applications. Herein we demonstrate the anti-neoplastic potential of two healing plants used by the Maya of the Guatemala/Belize area against severe inflammatory conditions such as neuritis, rheumatism, arthritis, coughs, bruises and tumours. Phlebodium decumanum and Pluchea odorata were collected, dried and freeze dried, and extracted with five solvents of increasing polarity. We tested HL-60 and MCF-7 cells, the inhibition of proliferation and the induction of cell death were investigated as hallmark endpoints to measure the efficiency of anti-cancer drugs. Western blot and FACS analyses elucidated the underlying mechanisms. While extracts of P. decumanum showed only moderate anti-cancer activity and were therefore not further analysed, particularly the dichloromethane extract of P. odorata inhibited the cell cycle in G2-M which correlated with the activation of checkpoint kinase 2, and down-regulation of Cdc25A and cyclin D1 as well as inactivation of Erk1/2. In HL-60 and MCF-7 cells this extract was a very strong inducer of cell death activating caspase-3 followed by PARP signature type cleavage. The initiating death trigger was likely the stabilization of microtubules monitored by the rapid acetylation of alpha-tubulin, which was even more pronounced than that triggered by taxol. The dichloromethane extract of P. odorata contains apolar constituents which inhibit inflammatory responses and exhibit anti-cancer activity. The strong proapoptotic potential warrants further bioassay-guided fractionation to discover and test the active principle(s).


Subject(s)
Antineoplastic Agents/pharmacology , Plant Extracts/pharmacology , Asteraceae , Bisbenzimidazole/pharmacology , Cell Line, Tumor , Cell Separation , Drug Screening Assays, Antitumor , E-Selectin/biosynthesis , Enzyme-Linked Immunosorbent Assay , Ethnopharmacology/methods , Flow Cytometry , Guatemala , HL-60 Cells , Humans , In Vitro Techniques , Subcellular Fractions
SELECTION OF CITATIONS
SEARCH DETAIL
...