Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 224
Filter
3.
Physiol Mol Biol Plants ; 29(10): 1543-1561, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38076761

ABSTRACT

Canonical heterotrimeric G-proteins (G-proteins) are comprised of Gα, Gß, and Gγ subunits. G-proteins regulate multiple crucial plant growth and development processes, incorporating environmental responses. Besides Gα, Gß and Gγ, the discovery of atypical Gα subunits termed as extra-large G-proteins or extra-large GTP-binding proteins (XLGs) makes G-protein signaling unique in plants. The C-terminus of XLG shares similarities with the canonical Gα subunits; the N-terminus harbors a nuclear localization signal (NLS) and is rich in cysteine. The earlier explorations suggest XLG's role in flowering, the development of embryos and seedlings, root morphogenesis, stamen development, cytokinin-induced development, stomatal opening and regulation of rice grain filling. The XLGs are also known to initiate signaling cascades that prime plants against a variety of abiotic and biotic stresses. They are also engaged in controlling several agronomic parameters such as rice panicle length, grain filling, grain size, and biomass, highlighting their potential contribution to crop improvement. The present review explores the remarkable properties of non-canonical Gα subunits (XLGs) and reflects on the various developmental, abiotic and biotic stress signaling pathways controlled by them. Moreover, the bottleneck dilemma of how a tiny handful of XLGs control a multiplicity of stress-responsive activities is partially resolved in this review by addressing the interaction of XLGs with different interacting proteins. XLG proteins presented in this review can be exploited to gain access to highly productive and stress-tolerant plants.

5.
Planta ; 258(5): 101, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37847414

ABSTRACT

MAIN CONCLUSION: A comprehensive understanding of nitrogen signaling cascades involving heterotrimeric G-proteins and their putative receptors can assist in the production of nitrogen-efficient plants. Plants are immobile in nature, so they must endure abiotic stresses including nutrient stress. Plant development and agricultural productivity are frequently constrained by the restricted availability of nitrogen in the soil. Non-legume plants acquire nitrogen from the soil through root membrane-bound transporters. In depleted soil nitrogen conditions, legumes are naturally conditioned to fix atmospheric nitrogen with the aid of nodulation elicited by nitrogen-fixing bacteria. Moreover, apart from the symbiotic nitrogen fixation process, nitrogen uptake from the soil can also be a significant secondary source to satisfy the nitrogen requirements of legumes. Heterotrimeric G-proteins function as molecular switches to help plant cells relay diverse stimuli emanating from external stress conditions. They are comprised of Gα, Gß and Gγ subunits, which cooperate with several downstream effectors to regulate multiple plant signaling events. In the present review, we concentrate on signaling mechanisms that regulate plant nitrogen nutrition. Our review highlights the potential of heterotrimeric G-proteins, together with their putative receptors, to assist the legume root nodule symbiosis (RNS) cascade, particularly during calcium spiking and nodulation. Additionally, the functions of heterotrimeric G-proteins in nitrogen acquisition by plant roots as well as in improving nitrogen use efficiency (NUE) have also been discussed. Future research oriented towards heterotrimeric G-proteins through genome editing tools can be a game changer in the enhancement of the nitrogen fixation process. This will foster the precise manipulation and production of plants to ensure global food security in an era of climate change by enhancing crop productivity and minimizing reliance on external inputs.


Subject(s)
Fabaceae , Heterotrimeric GTP-Binding Proteins , Rhizobium , Root Nodules, Plant/genetics , Plant Root Nodulation/physiology , Nitrogen/metabolism , Nitrogen Fixation , Fabaceae/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Symbiosis/physiology , Plants/metabolism , Vegetables/metabolism , Soil , Rhizobium/physiology
6.
Sci Rep ; 13(1): 12184, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37500702

ABSTRACT

Aluminium (Al) is the third most abundant element in the Earth's crust. Globally, acidic soil occupies 30-40% of ice-free land areas; Al toxicity is a major threat to crops. The first symptom of Al toxicity is the inhibition of root growth followed by poor root hair development, swollen root apices, necrosis of leaves and reduced yield. Although Rice (Oryza sativa) is an Al toxicity tolerant crop, it shows considerable variations among rice genotypes to Al exposure. Therefore, it is pertinent to understand Al toxicity and underlying mechanisms for Al tolerance in Rice. In the present study, 63 rice genotypes screened under Al stress showed significant variations of root growth. Expression stability of endogenous control genes (ECGs) revealed sulphite reductase (SR) as the most stable ECG that can be used as a reference gene for quantitative real-time PCR (qRT-PCR). Expression patterns of Al-responsive genes suggest genes associated with cytoskeletal dynamics, metabolism, and ion transporter could play significant roles in Al adaptation and tolerance in rice. The results showed Motodhan, Vietnam-1, Yimyu and N-861 as Al-toxicity tolerant, while Lespah, RCPL-13, VL-31329, and UPR2919-141-1 as most Al-sensitive genotypes among the studied rice lines cultivated in North-East India.


Subject(s)
Oryza , Aluminum/metabolism , Plant Roots/metabolism , Genotype , Adaptation, Physiological/genetics , Gene Expression Regulation, Plant
7.
Plant Mol Biol ; 113(1-3): 19-32, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37523054

ABSTRACT

Helicases are the motor proteins not only involved in the process of mRNA metabolism but also played a significant role in providing abiotic stresses tolerance. In this study, a DEAD-box RNA helicase OsDB10 was cloned and functionally characterized. The transcript levels of OsDB10 were increased both in shoot and root upon salt, heat, cold, and ABA application and was more prominent in shoot compared to root. Genomic integration of OsDB10 in transgenic rice was confirmed by PCR, Southern blot and qRT-PCR analysis. The transgenic plants showed quicker seed germination, reduced necrosis, higher chlorophyll, more survival rate, better seedling growth, and produced more grain yield under salinity stress. Furthermore, transgenic lines also accumulated less Na+ and high K+ ions and salinity tolerance of the transgenic were also assayed by measuring different bio-physiological indices. Moreover, the OsDB10 transgenic plants showed enhanced tolerance to salinity-induced oxidative stress by scavenging ROS and increased activity of antioxidants enzymes. Microarray analysis showed upregulation of transcriptional regulations and metabolic reprogramming as OsDB10 overexpression modulates the expression of many other genes. Altogether, our results confirmed that OsDB10 is a functional DEAD-box RNA helicase and played vital roles in plant defence response against salinity stress.

8.
Plant Sci ; 335: 111786, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37419328

ABSTRACT

RuvBL, is a member of SF6 superfamily of helicases and is conserved among the various model systems. Recently, rice (Oryza sativa L.) homolog of RuvBL has been biochemically characterized for its ATPase and DNA helicase activities; however its involvement in stress has not been studied so far. Present investigation reports the detailed functional characterization of OsRuvBL under abiotic stresses through genetic engineering. An efficient Agrobacterium-mediated in planta transformation protocol was developed in indica rice to generate the transgenic lines and study was focused on optimization of factors to achieve maximum transformation efficiency. Overexpressing OsRuvBL1a transgenic lines showed enhanced tolerance under in vivo salinity stress as compared to WT plants. The physiological and biochemical analysis of the OsRuvBL1a transgenic lines showed better performance under salinity and drought stresses. Several stress responsive interacting partners of OsRuvBL1a were identified using Y2H system revealed to its role in stress tolerance. Functional mechanism for boosting stress tolerance by OsRuvBL1a has been proposed in this study. This integration of OsRuvBL1a gene in rice genome using in planta transformation method helped to achieve the abiotic stress resilient smart crop. This study is the first direct evidence to show the novel function of RuvBL in boosting abiotic stress tolerance in plants.


Subject(s)
DNA Helicases , Oryza , DNA Helicases/genetics , DNA Helicases/metabolism , Oryza/metabolism , Drought Resistance , Salinity , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Droughts , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
9.
Transgenic Res ; 32(4): 293-304, 2023 08.
Article in English | MEDLINE | ID: mdl-37247124

ABSTRACT

Helicases are the motor proteins not only involved in transcriptional and post-transcription process but also provide abiotic stress tolerance in many crops. The p68, belong to the SF2 (DEAD-box helicase) family proteins and overexpression of Psp68 providing enhanced tolerance to transgenic rice plants. In this study, salinity tolerant marker-free transgenic rice has been developed by overexpressing Psp68 gene and phenotypically characterized. The Psp68 overexpressing marker-free transgenic rice plants were initially screened in the rooting medium containing salt stress and 20% polyethylene glycol (PEG). Stable integration and overexpression of Psp68 in marker-free transgenic lines were confirmed by molecular analyses including PCR, southern, western blot, and qRT-PCR analyses. The marker-free transgenic lines showed enhanced tolerance to salinity stress as displayed by early seed germination, higher chlorophyll content, reduced necrosis, more survival rate, improved seedling growth and more grain yield per plant. Furthermore, Psp68 overexpressing marker-free transgenics also accumulated less Na+ and higher K+ ions in the presence of salinity stress. Phenotypic analyses also revealed that marker-free transgenic rice lines efficiently scavenge ROS-mediated damages as displayed by lower H2O2 and malondialdehyde content, delayed electrolyte leakage, higher photosynthetic efficiency, membrane stability, proline content and enhanced activities of antioxidants enzymes. Overall, our results confirmed that Psp68 overexpression confers salinity stress tolerance in marker-free transgenics, hence the technique could be utilized to develop genetically modified crops without any biosafety issues.


Subject(s)
Oryza , Oryza/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Crops, Agricultural/genetics , Hydrogen Peroxide , Stress, Physiological/genetics , DNA Helicases/genetics , Salt Tolerance/genetics , DEAD-box RNA Helicases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Salinity
10.
Plant Sci ; 334: 111736, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37211221

ABSTRACT

The tomato is well-known for its anti-oxidative and anti-cancer properties, and with a wide range of health benefits is an important cash crop for human well-being. However, environmental stresses (especially abiotic) are having a deleterious effect on plant growth and productivity, including tomato. In this review, authors describe how salinity stress imposes risk consequences on growth and developmental processes of tomato through toxicity by ethylene (ET) and cyanide (HCN), and ionic, oxidative, and osmotic stresses. Recent research has clarified how salinity stress induced-ACS and - ß-CAS expressions stimulate the accumulation of ET and HCN, wherein the action of salicylic acid (SA),compatible solutes (CSs), polyamines (PAs) and ET inhibitors (ETIs) regulate ET and HCN metabolism. Here we emphasize how ET, SA and PA cooperates with mitochondrial alternating oxidase (AOX), salt overly sensitive (SOS) pathways and the antioxidants (ANTOX) system to better understand the salinity stress resistance mechanism. The current literature evaluated in this paper provides an overview of salinity stress resistance mechanism involving synchronized routes of ET metabolism by SA and PAs, connecting regulated network of central physiological processes governing through the action of AOX, ß-CAS, SOS and ANTOX pathways, which might be crucial for the development of tomato.


Subject(s)
Ethylenes , Salt Stress , Solanum lycopersicum , Ethylenes/metabolism , Solanum lycopersicum/metabolism , Solanum lycopersicum/physiology , Salt Stress/physiology
11.
Protoplasma ; 260(4): 1007-1029, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36525153

ABSTRACT

Plants are frequently subjected to abiotic and biotic stress which causes major impediments in their growth and development. It is emerging that small guanosine triphosphatases (small GTPases), also known as monomeric GTP-binding proteins, assist plants in managing environmental stress. Small GTPases function as tightly regulated molecular switches that get activated with the aid of guanosine triphosphate (GTP) and deactivated by the subsequent hydrolysis of GTP to guanosine diphosphate (GDP). All small GTPases except Rat sarcoma (Ras) are found in plants, including Ras-like in brain (Rab), Rho of plant (Rop), ADP-ribosylation factor (Arf) and Ras-like nuclear (Ran). The members of small GTPases in plants interact with several downstream effectors to counteract the negative effects of environmental stress and disease-causing pathogens. In this review, we describe processes of stress alleviation by developing pathways involving several small GTPases and their associated proteins which are important for neutralizing fungal infections, stomatal regulation, and activation of abiotic stress-tolerant genes in plants. Previous reviews on small GTPases in plants were primarily focused on Rab GTPases, abiotic stress, and membrane trafficking, whereas this review seeks to improve our understanding of the role of all small GTPases in plants as well as their interactome in regulating mechanisms to combat abiotic and biotic stress. This review brings to the attention of scientists recent research on small GTPases so that they can employ genome editing tools to precisely engineer economically important plants through the overexpression/knock-out/knock-in of stress-related small GTPase genes.


Subject(s)
Stress, Physiological , rab GTP-Binding Proteins , rab GTP-Binding Proteins/metabolism , Guanosine Triphosphate/metabolism
12.
Methods Protoc ; 5(5)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36136815

ABSTRACT

Crop improvement under changing climatic conditions is required to feed the growing global population. The development of transgenic crops is an attractive and conceivably the most effective approach for crop improvement with desired traits in varying climatic situations. Here, we describe a simple, efficient and robust in planta Agrobacterium-mediated genetic transformation method that can be used in most crops, including rice, wheat and cotton, and particularly in tissue culture recalcitrant crops, such as chickpea and pigeon pea. The protocol was successfully used for the development of transgenic chickpea and pigeon pea lines for resistance against pod borer. Transgenic lines in chickpea, pigeon pea and wheat were also developed for salt stress tolerance. These lines exhibited improved salt tolerance in terms of various physio-biochemical parameters studied. Since the protocol is rapid, as no tissue culture step is involved, it will significantly contribute to the improvement of most crops and will be of interest for plant biologists working with genetic engineering or genome editing.

13.
Plant Physiol Biochem ; 186: 242-251, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35930936

ABSTRACT

Biotic and abiotic stress tolerant crops are required for sustainable agriculture as well as ensuring global food security. In a previous study, we have reported that heterologous overexpression of pea DNA helicase (PDH45), a DEAD-box family member protein, provides salinity stress tolerance in rice. The improved management of photosynthetic machinery and scavenging of reactive oxygen species (ROS) are associated with PDH45 mediated salinity stress tolerance. However, the role of PDH45 in biotic and other abiotic stress (drought) tolerance remains unexplored. In the present study, we have generated marker-free transgenic IR64 rice lines that overexpress PDH45 under the CaMV35S promoter. The transgenic rice lines exhibited a significant level of tolerance against sheath blight disease, caused by Rhizoctonia solani, a polyphagous necrotrophic fungal pathogen. The defense as well as antioxidant responsive marker genes were significantly upregulated in the PDH45 overexpressing (OE) rice lines, upon pathogen infection. Moreover, the OE lines exhibited tolerance to drought stress and various antioxidant as well as drought responsive marker genes were significantly upregulated in them, upon drought stress. Overall, the current study emphasizes that heterologous overexpression of PDH45 provides abiotic as well as biotic stress tolerance in rice. Tolerance against drought as well as sheath blight disease by overexpression of a single gene (PDH45) signifies the practical implication of the present study. Moreover, considering the conserved nature of the gene in different plant species, we anticipate that PDH45 can be gainfully deployed to impart tolerance against multiple stresses in agriculturally important crops.


Subject(s)
Oryza , Antioxidants , Droughts , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Pisum sativum/genetics , Pisum sativum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics
14.
Mol Biol Rep ; 49(12): 12109-12119, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35764748

ABSTRACT

Plant viruses are the major pathogens that cause heavy yield loss in potato. The important viruses are potato virus X, potato virus Y and potato leaf roll virus around the world. Besides these three viruses, a novel tomato leaf curl New Delhi virus is serious in India. Conventional cum molecular breeding and transgenics approaches have been applied to develop virus resistant potato genotypes. But progress is slow in developing resistant varieties due to lack of host genes and long breeding process, and biosafety concern with transgenics. Hence, CRISPR-Cas mediated genome editing has emerged as a powerful technology to address these issues. CRISPR-Cas technology has been deployed in potato for several important traits. We highlight here CRISPR-Cas approaches of virus resistance through targeting viral genome (DNA or RNA), host factor gene and multiplexing of target genes simultaneously. Further, advancement in CRISPR-Cas research is presented in the area of DNA-free genome editing, virus-induced genome editing, and base editing. CRISPR-Cas delivery, transformation methods, and challenges in tetraploid potato and possible methods are also discussed.


Subject(s)
Plant Viruses , Solanum tuberosum , Gene Editing , Solanum tuberosum/genetics , CRISPR-Cas Systems/genetics , Plant Breeding , Plant Viruses/genetics , Genome, Plant
15.
Antioxidants (Basel) ; 11(4)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35453455

ABSTRACT

Helicases function as key enzymes in salinity stress tolerance, and the role and function of PDH45 (pea DNA helicase 45) in stress tolerance have been reported in different crops with selectable markers, raising public and regulatory concerns. In the present study, we developed five lines of marker-free PDH45-overexpressing transgenic lines of rice (Oryza sativa L. cv. IR64). The overexpression of PDH45 driven by CaMV35S promoter in transgenic rice conferred high salinity (200 mM NaCl) tolerance in the T1 generation. Molecular attributes such as PCR, RT-PCR, and Southern and Western blot analyses confirmed stable integration and expression of the PDH45 gene in the PDH45-overexpressing lines. We observed higher endogenous levels of sugars (glucose and fructose) and hormones (GA, zeatin, and IAA) in the transgenic lines in comparison to control plants (empty vector (VC) and wild type (WT)) under salt treatments. Furthermore, photosynthetic characteristics such as net photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 (Ci), and chlorophyll (Chl) content were significantly higher in transgenic lines under salinity stress as compared to control plants. However, the maximum primary photochemical efficiency of PSII, as an estimated from variable to maximum chlorophyll a fluorescence (Fv/Fm), was identical in the transgenics to that in the control plants. The activities of antioxidant enzymes, such as catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and guaiacol peroxidase (GPX), were significantly higher in transgenic lines in comparison to control plants, which helped in keeping the oxidative stress burden (MDA and H2O2) lesser on transgenic lines, thus protecting the growth and photosynthetic efficiency of the plants. Overall, the present research reports the development of marker-free PDH45-overexpressing transgenic lines for salt tolerance that can potentially avoid public and biosafety concerns and facilitate the commercialization of genetically engineered crop plants.

17.
Sci Total Environ ; 809: 151139, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-34757101

ABSTRACT

In hydrological modelling, classification of catchments is a fundamental task for overcoming deficits in observational datasets. Most attention on this issue has focussed on identifying the catchments with similar hydrological responses for streamflow. Yet, effective methods for catchment classification are currently lacking in respect to Dissolved Inorganic Nitrogen (DIN), a water quality constituent that, at increasing concentrations, is threatening nutrient sensitive environments. Pattern recognition, using standard Artificial Neural Network algorithm is applied, as a novel approach to classify datasets that are considered to be suitable proxies for biological and anthropogenic drivers of observed DIN releases. Eleven gauged Great Barrier Reef (GBR) catchments within Queensland Australia are classified using spatial datasets extracted from ecosystem (e.g. original ecosystem responses to biogeographic, land zone, land form, and soil type attributes) and land use maps. To evaluate the performance of the examined spatial datasets as a proxy for deductive classification, the classification process is repeated inductively, using observed DIN and streamflow data from gauging stations. The ANN-PR method is seen to generate the same classification score format for the differing dataset types, and this facilitates a direct comparison for model output for observed data corroborations. The Kruskal-Wallis test for independence, at p > 0.05, identifies the deductive classification approach as a predictor for classification using DIN observations, which lacks an independence from each other at a p value of 0.01 and 0.02. This study concludes that an ANN-PR method can integrate the ecosystem and land use mapping data to deductively classify the GBR catchments into four regions that also have similar patterns of DIN concentrations. Due to the uniform availability of the mapping data, the findings provide a sound basis for further investigations into the transposing of knowledge from gauged catchments to ungauged areas.


Subject(s)
Ecosystem , Nitrogen , Neural Networks, Computer , Nitrogen/analysis , Soil , Water Quality
19.
Plant Signal Behav ; 16(11): 1950888, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34252347

ABSTRACT

Tomato is an important crop for its high nutritional and medicinal properties. The role of salicylic acid (SA) in 1-aminocyclopropane-1-carboxylate synthase (ACS), sodium-hydrogen exchanger (NHX1), salt overly sensitive 1 (sos1) and high-affinity K+ transporter (HKT1;2) transcripts, and ACS enzyme activity and ethylene (ET) production, and growth and physiological attributes was evaluated in tomato cv. Pusa Ruby under salinity stress. Thirty days-old seedlings treated with 0 mM NaCl, 250 mM NaCl, 250 mM NaCl plus 100 µM SA were assessed for different growth and physiological parameters at 45 DAS. Results showed ACS, NHX1, sos1 and HKT1;2 transcripts were significantly changed in SA treated plants. The ACS enzyme activity and ET content were considerably decreased in SA treated plants. Shoot length (SL), root length (RL), number of leaves (NL), leaf area per plant (LA), shoot fresh weight (SFW) and root fresh weight (RFW) were also improved under SA treatment. Conversely, the electrolyte leakage and sodium ion (Na+) content were significantly reduced in SA treated plants. In addition, the endogenous proline and potassium ion (K+) content, and K+/Na+ ratio were considerably increased under SA treatment. Likewise, antioxidant enzymes (SOD, CAT, APX and GR) profile were better in SA treated plant. The present findings suggest that SA reverse the negative effects of salinity stress and stress induced ET production by modulating ACS, NHX, sos1 and HKT1;2 transcript level, and improving various growth and physiological parameters, and antioxidants enzymes profile. This will contribute to a better understanding of salinity stress tolerance mechanisms of tomato plants involving SA and ET cross talk and ions homeostasis to develop more tolerant plant.


Subject(s)
Ethylenes/biosynthesis , Salicylic Acid/metabolism , Salt Tolerance/drug effects , Salt Tolerance/genetics , Sodium/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Gene Expression Regulation, Plant , Genes, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...