Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Vis ; 24(6): 2, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38833255

ABSTRACT

The spectral locus of unique yellow was determined for flashes of different sizes (<11 arcmin) and durations (<500 ms) presented in and near the fovea. An adaptive optics scanning laser ophthalmoscope was used to minimize the effects of higher-order aberrations during simultaneous stimulus delivery and retinal imaging. In certain subjects, parafoveal cones were classified as L, M, or S, which permitted the comparison of unique yellow measurements with variations in local L/M ratios within and between observers. Unique yellow shifted to longer wavelengths as stimulus size or duration was reduced. This effect is most pronounced for changes in size and more apparent in the fovea than in the parafovea. The observed variations in unique yellow are not entirely predicted from variations in L/M ratio and therefore implicate neural processes beyond photoreception.


Subject(s)
Fovea Centralis , Photic Stimulation , Retinal Cone Photoreceptor Cells , Humans , Photic Stimulation/methods , Retinal Cone Photoreceptor Cells/physiology , Fovea Centralis/physiology , Color Perception/physiology , Retina/physiology , Adult , Ophthalmoscopy/methods
2.
J Vis ; 23(12): 4, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37801322

ABSTRACT

The 2-photon effect in vision occurs when two photons of the same wavelength are absorbed by cone photopigment in the retina and create a visual sensation matching the appearance of light close to half their wavelength. This effect is especially salient for infrared light, where humans are mostly insensitive to 1-photon isomerizations and thus any perception is dominated by 2-photon isomerizations. This phenomenon can be made more readily visible using short-pulsed lasers, which increase the likelihood of 2-photon excitation by making photon arrivals at the retina more concentrated in time. Adaptive optics provides another avenue for enhancing the 2-photon effect by focusing light more tightly at the retina, thereby increasing the spatial concentration of incident photons. This article makes three contributions. First, we demonstrate through color-matching experiments that an adaptive optics correction can provide a 25-fold increase in the luminance of the 2-photon effect-a boost equivalent to reducing pulse width by 96%. Second, we provide image-based evidence that the 2-photon effect occurs at the photoreceptor level. Third, we use our results to compute the specifications for a system that could utilize 2-photon vision and adaptive optics to image and stimulate the retina using a single infrared wavelength and reach luminance levels comparable to conventional displays.


Subject(s)
Retinal Cone Photoreceptor Cells , Vision, Ocular , Humans , Retina
3.
Adv Exp Med Biol ; 1415: 189-194, 2023.
Article in English | MEDLINE | ID: mdl-37440033

ABSTRACT

Enhanced S-cone Syndrome (ESCS) is an autosomal recessive inherited retinal disease mostly associated with disease-causing variants in the NR2E3 gene. During retinal development in ESCS, rod photoreceptor precursors are misdirected to form photoreceptors similar to short-wavelength cones, or S-cones. Compared to a normal human retina, patients with ESCS have no rods and significantly increased numbers of S-cones. Night blindness is the main visual symptom, and visual acuity and color vision can be normal at early disease stages. Histology of donor eyes and adaptive optics imaging revealed increased S-cone density outside of the fovea compared to normal. Visual function testing reveals absent rod function and abnormally enhanced sensitivity to short-wavelength light. Unlike most retinal degenerative diseases, ESCS results in a gain in S-cone photoreceptor function. Research involving ESCS could improve understanding of this rare retinal condition and also shed light on the role of NR2E3 expression in photoreceptor survival.


Subject(s)
Orphan Nuclear Receptors , Retinal Degeneration , Humans , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , Retinal Degeneration/pathology , Retina/pathology , Retinal Cone Photoreceptor Cells/pathology
4.
Invest Ophthalmol Vis Sci ; 64(10): 17, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37459066

ABSTRACT

Purpose: To measure photoreceptor packing density and S-cone spatial resolution as a function of retinal eccentricity in patients with enhanced S-cone syndrome (ESCS) and to discuss the possible mechanisms supporting their supernormal S-cone acuity. Methods: We used an adaptive optics scanning laser ophthalmoscope (AOSLO) to characterize photoreceptor packing. A custom non-AO display channel was used to measure L/M- and S-cone-mediated visual acuity during AOSLO imaging. Acuity measurements were obtained using a four-alternative, forced-choice, tumbling E paradigm along the temporal meridian between the fovea and 4° eccentricity in five of six patients and in seven control subjects. L/M acuity was tested by presenting long-pass-filtered optotypes on a black background, excluding wavelengths to which S-cones are sensitive. S-cone isolation was achieved using a two-color, blue-on-yellow chromatic adaptation method that was validated on three control subjects. Results: Inter-cone spacing measurements revealed a near-uniform cone density profile (ranging from 0.9-1.5 arcmin spacing) throughout the macula in ESCS. For comparison, normal cone density decreases by a factor of 14 from the fovea to 6°. Cone spacing of ESCS subjects was higher than normal in the fovea and subnormal beyond 2°. Compared to the control subjects (n = 7), S-cone-mediated acuities in patients with ESCS were normal near the fovea and became increasingly supernormal with retinal eccentricity. Beyond 2°, S-cone acuities were superior to L/M-cone-mediated acuity in the ESCS cohort, a reversal of the trend observed in normal retinas. Conclusions: Higher than normal parafoveal cone densities (presumably dominated by S-cones) confer better than normal S-cone-mediated acuity in ESCS subjects.


Subject(s)
Retinal Cone Photoreceptor Cells , Retinal Degeneration , Humans , Retina , Visual Acuity , Fovea Centralis , Ophthalmoscopy
5.
J Vis ; 23(5): 2, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37133838

ABSTRACT

When single cones are stimulated with spots of 543-nm light presented against a white background, subjects report percepts that vary between predominately red, white, and green. However, light of the same spectral composition viewed over a large field under normal viewing conditions looks invariably green and highly saturated. It remains unknown what stimulus parameters are most important for governing the color appearance in the transition between these two extreme cases. The current study varied the size, intensity and retinal motion of stimuli presented in an adaptive optics scanning laser ophthalmoscope. Stimuli were either stabilized on target locations or allowed to drift across the retina with the eye's natural motion. Increasing both stimulus size and intensity led to higher likelihoods that monochromatic spots of light were perceived as green, whereas only higher intensities led to increases in perceived saturation. The data also show an interaction between size and intensity, suggesting that the balance between magnocellular and parvocellular activation may be critical factors for color perception. Surprisingly, under the range of conditions tested, color appearance did not depend on whether stimuli were stabilized. Sequential activation of many cones does not appear to drive hue and saturation perception as effectively as simultaneous activation of many cones.


Subject(s)
Retina , Retinal Cone Photoreceptor Cells , Humans , Retina/physiology , Retinal Cone Photoreceptor Cells/physiology , Vision, Ocular , Color Perception/physiology
6.
Optom Vis Sci ; 100(4): 281-288, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36856552

ABSTRACT

SIGNIFICANCE: This case report demonstrates the use of novel imaging techniques and functional tests to longitudinally evaluate retinal structure and function after laser retinal injury. The structural and functional prognosis could be predicted with clinical findings, high-resolution retinal imaging, and functional testing. PURPOSE: We present a laser retinal injury case in which an adaptive optics scanning laser ophthalmoscope and adaptive optics-based psychophysics were used to examine and monitor retinal structure and function after accidental exposure to a 1-W infrared laser beam. CASE REPORT: A 23-year-old patient was unwittingly exposed to a 1-W, 852-nm continuous-wave laser at work as they noticed a small central blurry spot in the right eye. An initial eye examination was done 1 day after exposure, and the right eye's acuity was 20/25 -2 . Posterior segment evaluation revealed disrupted outer retina near the right eye's fovea. Adaptive optics imaging 2 weeks after the exposure revealed a 0.50 × 0.75° elliptical area with irregular borders and abnormal cone reflectivity just below the fovea. Starting at 1-month follow-up, structural recovery was observed on optical coherence tomography (OCT). Subsequent adaptive optics imaging showed significant recovery of cone reflectivity. Importantly, adaptive optics microperimetry showed measurable detection thresholds at all affected retinal locations at 6 months. By 10 months, all sites exhibited normal sensitivities. CONCLUSIONS: Retinal structure and function from laser injury can be visualized and measured with OCT, adaptive optics imaging, and psychophysics. An intact Bruch's membrane on OCT and measurable retinal sensitivity by adaptive optics microperimetry may serve as good biomarkers for retinal recovery.


Subject(s)
Eye Injuries , Retinal Diseases , Humans , Young Adult , Adult , Retina/diagnostic imaging , Retinal Cone Photoreceptor Cells , Tomography, Optical Coherence/methods , Fovea Centralis , Eye Injuries/diagnosis , Eye Injuries/etiology , Ophthalmoscopy/methods
7.
Curr Biol ; 31(11): R701-R703, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34102113

ABSTRACT

William Tuten and Wolf Harmening introduce the anatomical and functional signatures of foveated vision in humans.


Subject(s)
Fovea Centralis/physiology , Vision, Ocular/physiology , Humans , Visual Fields/physiology
8.
PLoS One ; 14(7): e0211397, 2019.
Article in English | MEDLINE | ID: mdl-31344029

ABSTRACT

The human retina contains three classes of cone photoreceptors each sensitive to different portions of the visual spectrum: long (L), medium (M) and short (S) wavelengths. Color information is computed by downstream neurons that compare relative activity across the three cone types. How cone signals are combined at a cellular scale has been more difficult to resolve. This is especially true near the fovea, where spectrally-opponent neurons in the parvocellular pathway draw excitatory input from a single cone and thus even the smallest stimulus projected through natural optics will engage multiple color-signaling neurons. We used an adaptive optics microstimulator to target individual and pairs of cones with light. Consistent with prior work, we found that color percepts elicited from individual cones were predicted by their spectral sensitivity, although there was considerable variability even between cones within the same spectral class. The appearance of spots targeted at two cones were predicted by an average of their individual activations. However, two cones of the same subclass elicited percepts that were systematically more saturated than predicted by an average. Together, these observations suggest both spectral opponency and prior experience influence the appearance of small spots.


Subject(s)
Color Perception/physiology , Color Vision/physiology , Retinal Cone Photoreceptor Cells/physiology , Adult , Color , Female , Fovea Centralis , Humans , Male , Retina/physiology
9.
Ophthalmol Retina ; 3(10): 888-899, 2019 10.
Article in English | MEDLINE | ID: mdl-31235310

ABSTRACT

PURPOSE: Recent advances in retinal imaging allow visualization of structural abnormalities in retinal disease at the cellular level. This study used adaptive optics (AO) microperimetry to assess visual sensitivity with high spatial precision and to examine how function varies across 2 phenotypic features observed in choroideremia: atrophic lesion borders and outer retinal tubulations (ORTs). DESIGN: Cross-sectional study. PARTICIPANTS: Twelve choroideremia patients. METHODS: A custom AO scanning light ophthalmoscope (AOSLO) equipped with both confocal and nonconfocal split-detection imaging methods was used to image the photoreceptor inner and outer segment mosaics. For AO microperimetry, circular 550-nm stimuli were presented through the AOSLO system; stimuli were either 9.6 or 38.3 arcmin2 (approximately 60 or 15 times smaller than a Goldman III stimulus). Test locations were identified in structural images and stimuli were targeted to these locations using real-time retinal tracking combined with measurements of transverse chromatic aberration. Psychophysical detection thresholds were measured at the atrophic border in 12 patients. Additionally, visual sensitivity was probed along ORTs in 4 patients. MAIN OUTCOME MEASURE: Visual sensitivity thresholds measured with AO microperimetry at retinal locations corresponding to structural phenotypes observed on AOSLO retinal images. RESULTS: In choroideremia, sharp borders between intact central islands of the photoreceptor mosaic and complete atrophy of the outer retina and retinal pigment epithelium were observed in both split-detection and confocal structural images. Adaptive optics microperimetry at locations spanning these borders showed a commensurately sharp decrease in function, with readily measurable visual sensitivity on one side and dense scotoma on the other. These functional transitions often occurred over a distance smaller than the diameter of the Goldman III stimulus. Thresholds measured along ORTs showed dense scotoma over the tubule in all 4 participants, despite the visibility of remnant cone inner segments on the AO images. CONCLUSIONS: Choroideremia patients exhibited sharp functional transitions that collocated with structural transitions from intact to severely degenerated retina. We found no evidence of visual sensitivity over ORTs. Measuring cone function with high resolution offered insight into disease mechanisms and may enable precise assessment of whether experimental therapies, such as gene therapy, provide a functional benefit.


Subject(s)
Choroideremia/physiopathology , Ophthalmoscopy/methods , Retinal Pigment Epithelium/pathology , Scotoma/physiopathology , Tomography, Optical Coherence/methods , Visual Acuity , Visual Fields , Adult , Choroideremia/diagnosis , Choroideremia/etiology , Cross-Sectional Studies , Humans , Male , Middle Aged , Scotoma/complications , Scotoma/diagnosis , Young Adult
10.
J Vis ; 18(8): 6, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30105385

ABSTRACT

Psychophysical inferences about the neural mechanisms supporting spatial vision can be undermined by uncertainties introduced by optical aberrations and fixational eye movements, particularly in fovea where the neuronal grain of the visual system is fine. We examined the effect of these preneural factors on photopic spatial summation in the human fovea using a custom adaptive optics scanning light ophthalmoscope that provided control over optical aberrations and retinal stimulus motion. Consistent with previous results, Ricco's area of complete summation encompassed multiple photoreceptors when measured with ordinary amounts of ocular aberrations and retinal stimulus motion. When both factors were minimized experimentally, summation areas were essentially unchanged, suggesting that foveal spatial summation is limited by postreceptoral neural pooling. We compared our behavioral data to predictions generated with a physiologically-inspired front-end model of the visual system, and were able to capture the shape of the summation curves obtained with and without pre-retinal factors using a single postreceptoral summing filter of fixed spatial extent. Given our data and modeling, neurons in the magnocellular visual pathway, such as parasol ganglion cells, provide a candidate neural correlate of Ricco's area in the central fovea.


Subject(s)
Eye Movements/physiology , Fixation, Ocular/physiology , Fovea Centralis/physiology , Spatial Processing/physiology , Visual Pathways/physiology , Adult , Female , Humans , Male , Middle Aged , Psychophysics/methods , Sensory Thresholds/physiology
11.
Sci Rep ; 8(1): 8561, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29867090

ABSTRACT

Color vision requires the activity of cone photoreceptors to be compared in post-receptoral circuitry. Decades of psychophysical measurements have quantified the nature of these comparative interactions on a coarse scale. How such findings generalize to a cellular scale remains unclear. To answer that question, we quantified the influence of surrounding light on the appearance of spots targeted to individual cones. The eye's aberrations were corrected with adaptive optics and retinal position was precisely tracked in real-time to compensate for natural movement. Subjects reported the color appearance of each spot. A majority of L-and M-cones consistently gave rise to the sensation of white, while a smaller group repeatedly elicited hue sensations. When blue sensations were reported they were more likely mediated by M- than L-cones. Blue sensations were elicited from M-cones against a short-wavelength light that preferentially elevated the quantal catch in surrounding S-cones, while stimulation of the same cones against a white background elicited green sensations. In one of two subjects, proximity to S-cones increased the probability of blue reports when M-cones were probed. We propose that M-cone increments excited both green and blue opponent pathways, but the relative activity of neighboring cones favored one pathway over the other.


Subject(s)
Color Perception/physiology , Eye Movements/physiology , Retinal Cone Photoreceptor Cells/physiology , Adult , Humans , Male , Retinal Cone Photoreceptor Cells/cytology
12.
Biomed Opt Express ; 9(4): 1842, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29676401

ABSTRACT

[This corrects the article on p. 5098 in vol. 8, PMID: 29188106.].

13.
Biomed Opt Express ; 8(11): 5098-5112, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29188106

ABSTRACT

Vision begins when light isomerizes the photopigments within photoreceptors. Noninvasive cellular-scale observation of the structure of the human photoreceptor mosaic is made possible through the use of adaptive optics (AO) enhanced ophthalmoscopes, but establishing noninvasive objective measures of photoreceptor function on a similar scale has been more difficult. AO ophthalmoscope images acquired with near-infrared light show that individual cone photoreceptor reflectance can change in response to a visible stimulus. Here we show that the intrinsic response depends on stimulus wavelength and intensity, and that its action spectrum is well-matched to the spectral sensitivity of cone-mediated vision. Our results demonstrate that the cone reflectance response is mediated by photoisomerization, thus making it a direct measure of photoreceptor function.

14.
Am J Ophthalmol Case Rep ; 7: 14-19, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29057371

ABSTRACT

PURPOSE: Confocal adaptive optics scanning laser ophthalmoscope (AOSLO) images provide a sensitive measure of cone structure. However, the relationship between structural findings of diminished cone reflectivity and visual function is unclear. We used fundus-referenced testing to evaluate visual function in regions of apparent cone loss identified using confocal AOSLO images. METHODS: A patient diagnosed with acute bilateral foveolitis had spectral-domain optical coherence tomography (SD-OCT) (Spectralis HRA + OCT system [Heidelberg Engineering, Vista, CA, USA]) images indicating focal loss of the inner segment-outer segment junction band with an intact, but hyper-reflective, external limiting membrane. Five years after symptom onset, visual acuity had improved from 20/80 to 20/25, but the retinal appearance remained unchanged compared to 3 months after symptoms began. We performed structural assessments using SD-OCT, directional OCT (non-standard use of a prototype on loan from Carl Zeiss Meditec) and AOSLO (custom-built system). We also administered fundus-referenced functional tests in the region of apparent cone loss, including analysis of preferred retinal locus (PRL), AOSLO acuity, and microperimetry with tracking SLO (TSLO) (prototype system). To determine AOSLO-corrected visual acuity, the scanning laser was modulated with a tumbling E consistent with 20/30 visual acuity. Visual sensitivity was assessed in and around the lesion using TSLO microperimetry. Complete eye examination, including standard measures of best-corrected visual acuity, visual field tests, color fundus photos, and fundus auto-fluorescence were also performed. RESULTS: Despite a lack of visible cone profiles in the foveal lesion, fundus-referenced vision testing demonstrated visual function within the lesion consistent with cone function. The PRL was within the lesion of apparent cone loss at the fovea. AOSLO visual acuity tests were abnormal, but measurable: for trials in which the stimulus remained completely within the lesion, the subject got 48% correct, compared to 78% correct when the stimulus was outside the lesion. TSLO microperimetry revealed reduced, but detectible, sensitivity thresholds within the lesion. CONCLUSIONS AND IMPORTANCE: Fundus-referenced visual testing proved useful to identify functional cones despite apparent photoreceptor loss identified using AOSLO and SD-OCT. While AOSLO and SD-OCT appear to be sensitive for the detection of abnormal or absent photoreceptors, changes in photoreceptors that are identified with these imaging tools do not correlate completely with visual function in every patient. Fundus-referenced vision testing is a useful tool to indicate the presence of cones that may be amenable to recovery or response to experimental therapies despite not being visible on confocal AOSLO or SD-OCT images.

15.
J Neurosci ; 37(39): 9498-9509, 2017 09 27.
Article in English | MEDLINE | ID: mdl-28871030

ABSTRACT

A remarkable feature of human vision is that the retina and brain have evolved circuitry to extract useful spatial and spectral information from signals originating in a photoreceptor mosaic with trichromatic constituents that vary widely in their relative numbers and local spatial configurations. A critical early transformation applied to cone signals is horizontal-cell-mediated lateral inhibition, which imparts a spatially antagonistic surround to individual cone receptive fields, a signature inherited by downstream neurons and implicated in color signaling. In the peripheral retina, the functional connectivity of cone inputs to the circuitry that mediates lateral inhibition is not cone-type specific, but whether these wiring schemes are maintained closer to the fovea remains unsettled, in part because central retinal anatomy is not easily amenable to direct physiological assessment. Here, we demonstrate how the precise topography of the long (L)-, middle (M)-, and short (S)-wavelength-sensitive cones in the human parafovea (1.5° eccentricity) shapes perceptual sensitivity. We used adaptive optics microstimulation to measure psychophysical detection thresholds from individual cones with spectral types that had been classified independently by absorptance imaging. Measured against chromatic adapting backgrounds, the sensitivities of L and M cones were, on average, receptor-type specific, but individual cone thresholds varied systematically with the number of preferentially activated cones in the immediate neighborhood. The spatial and spectral patterns of these interactions suggest that interneurons mediating lateral inhibition in the central retina, likely horizontal cells, establish functional connections with L and M cones indiscriminately, implying that the cone-selective circuitry supporting red-green color vision emerges after the first retinal synapse.SIGNIFICANCE STATEMENT We present evidence for spatially antagonistic interactions between individual, spectrally typed cones in the central retina of human observers using adaptive optics. Using chromatic adapting fields to modulate the relative steady-state activity of long (L)- and middle (M)-wavelength-sensitive cones, we found that single-cone detection thresholds varied predictably with the spectral demographics of the surrounding cones. The spatial scale and spectral pattern of these photoreceptor interactions were consistent with lateral inhibition mediated by retinal horizontal cells that receive nonselective input from L and M cones. These results demonstrate a clear link between the neural architecture of the visual system inputs-cone photoreceptors-and visual perception and have implications for the neural locus of the cone-specific circuitry supporting color vision.


Subject(s)
Color Perception , Color Vision , Retinal Cone Photoreceptor Cells/physiology , Visual Pathways/physiology , Humans , Interneurons/physiology , Sensory Thresholds , Visual Pathways/cytology
16.
Sci Adv ; 2(9): e1600797, 2016 09.
Article in English | MEDLINE | ID: mdl-27652339

ABSTRACT

The retina is the most accessible element of the central nervous system for linking behavior to the activity of isolated neurons. We unraveled behavior at the elementary level of single input units-the visual sensation generated by stimulating individual long (L), middle (M), and short (S) wavelength-sensitive cones with light. Spectrally identified cones near the fovea of human observers were targeted with small spots of light, and the type, proportion, and repeatability of the elicited sensations were recorded. Two distinct populations of cones were observed: a smaller group predominantly associated with signaling chromatic sensations and a second, more numerous population linked to achromatic percepts. Red and green sensations were mainly driven by L- and M-cones, respectively, although both cone types elicited achromatic percepts. Sensations generated by cones were rarely stochastic; rather, they were consistent over many months and were dominated by one specific perceptual category. Cones lying in the midst of a pure spectrally opponent neighborhood, an arrangement purported to be most efficient in producing chromatic signals in downstream neurons, were no more likely to signal chromatic percepts. Overall, the results are consistent with the idea that the nervous system encodes high-resolution achromatic information and lower-resolution color signals in separate pathways that emerge as early as the first synapse. The lower proportion of cones eliciting color sensations may reflect a lack of evolutionary pressure for the chromatic system to be as fine-grained as the high-acuity achromatic system.


Subject(s)
Color Perception/physiology , Color Vision/physiology , Retina/physiology , Retinal Cone Photoreceptor Cells/physiology , Humans , Light , Neurons/physiology , Photic Stimulation , Vision, Ocular/physiology , Visual Pathways/physiology
17.
Invest Ophthalmol Vis Sci ; 56(8): 4431-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26193919

ABSTRACT

PURPOSE: To determine the light sensitivity of poorly reflective cones observed in retinas of normal subjects, and to establish a relationship between cone reflectivity and perceptual threshold. METHODS: Five subjects (four male, one female) with normal vision were imaged longitudinally (7-26 imaging sessions, representing 82-896 days) using adaptive optics scanning laser ophthalmoscopy (AOSLO) to monitor cone reflectance. Ten cones with unusually low reflectivity, as well as 10 normally reflective cones serving as controls, were targeted for perceptual testing. Cone-sized stimuli were delivered to the targeted cones and luminance increment thresholds were quantified. Thresholds were measured three to five times per session for each cone in the 10 pairs, all located 2.2 to 3.3° from the center of gaze. RESULTS: Compared with other cones in the same retinal area, three of 10 monitored dark cones were persistently poorly reflective, while seven occasionally manifested normal reflectance. Tested psychophysically, all 10 dark cones had thresholds comparable with those from normally reflecting cones measured concurrently (P = 0.49). The variation observed in dark cone thresholds also matched the wide variation seen in a large population (n = 56 cone pairs, six subjects) of normal cones; in the latter, no correlation was found between cone reflectivity and threshold (P = 0.0502). CONCLUSIONS: Low cone reflectance cannot be used as a reliable indicator of cone sensitivity to light in normal retinas. To improve assessment of early retinal pathology, other diagnostic criteria should be employed along with imaging and cone-based microperimetry.


Subject(s)
Light , Night Vision/physiology , Retinal Cone Photoreceptor Cells/radiation effects , Visual Perception/physiology , Adult , Female , Humans , Male , Ophthalmoscopy , Prospective Studies , Psychophysics , Retinal Cone Photoreceptor Cells/physiology , Sensory Thresholds/physiology , Visual Acuity/physiology
18.
Invest Ophthalmol Vis Sci ; 56(2): 778-86, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25587056

ABSTRACT

PURPOSE: To evaluate visual function and disease progression in the retinal structural abnormalities of three patients from two unrelated families with macular telangiectasia (MacTel) type 2. METHODS: Adaptive optics scanning laser ophthalmoscopy (AOSLO) and AOSLO microperimetry (AOMP) were used to evaluate the structure and function of macular cones in three eyes with MacTel type 2. Cone spacing was estimated using histogram analysis of intercone distances, and registered spectral-domain optical coherence tomography (SD-OCT) scans were used to evaluate retinal anatomy. AOMP was used to assess visual sensitivity in and around areas of apparent cone loss. RESULTS: Although overall lesion surface area increased, some initially affected regions subsequently showed clear, contiguous, and normally spaced cone mosaics with recovered photoreceptor inner/outer segment (IS/OS) reflectivity (two of two eyes). The AOMP test sites fell within three categories: normal-appearing cones (N), dimly reflecting cones (D), and RPE cell mosaics (R). At N sites, AOMP threshold values (arbitrary units [au]) increased with increasing eccentricity (slope = 0.054 au/degree, r(2) = 0.77). The N thresholds ranged from 0.04 to 0.27 au, D thresholds from 0.04 to 0.33 au, and R thresholds from 0.14 to 1.00 au. There was measurable visual sensitivity everywhere except areas without intact external limiting membrane (ELM) and with diffuse scattering in the IS/OS and posterior tips of the outer segments (PTOS) regions on OCT. CONCLUSIONS: Visual sensitivity and recovery of cone visibility in areas of apparent focal cone loss suggests that MacTel type 2 lesions with a preserved ELM may contain functioning cones with abnormal scattering and/or waveguiding characteristics. (ClinicalTrials.gov number, NCT00254605.).


Subject(s)
Recovery of Function , Retinal Cone Photoreceptor Cells/physiology , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Tomography, Optical Coherence/methods , Visual Field Tests/methods , Visual Fields/physiology , Adult , Female , Fluorescein Angiography , Follow-Up Studies , Fundus Oculi , Humans , Male , Middle Aged , Ophthalmoscopy/methods , Telangiectasia, Hereditary Hemorrhagic/physiopathology , Visual Acuity
19.
J Neurosci ; 34(16): 5667-77, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-24741057

ABSTRACT

In humans, experimental access to single sensory receptors is difficult to achieve, yet it is crucial for learning how the signals arising from each receptor are transformed into perception. By combining adaptive optics microstimulation with high-speed eye tracking, we show that retinal function can be probed at the level of the individual cone photoreceptor in living eyes. Classical psychometric functions were obtained from cone-sized microstimuli targeted to single photoreceptors. Revealed psychophysically, the cone mosaic also manifests a variable sensitivity to light across its surface that accords with a simple model of cone light capture. Because this microscopic grain of vision could be detected on the perceptual level, it suggests that photoreceptors can act individually to shape perception, if the normally suboptimal relay of light by the eye's optics is corrected. Thus the precise arrangement of cones and the exact placement of stimuli onto those cones create the initial retinal limits on signals mediating spatial vision.


Subject(s)
Retina/anatomy & histology , Retina/physiology , Retinal Cone Photoreceptor Cells/physiology , Visual Perception/physiology , Female , Humans , Male , Models, Biological , Optics and Photonics , Photic Stimulation , Psychometrics , Psychophysics , Scanning Laser Polarimetry , Sensory Thresholds , Visual Fields/physiology , Visual Pathways/physiology
20.
Optom Vis Sci ; 89(5): 563-74, 2012 May.
Article in English | MEDLINE | ID: mdl-22446720

ABSTRACT

PURPOSE: To develop and test the application of an adaptive optics scanning laser ophthalmoscope (AOSLO) with eye tracking for high-resolution microperimetric testing. METHODS: An AOSLO was used to conduct simultaneous high-resolution retinal imaging and visual function testing in six normal subjects. Visual sensitivity was measured at test locations between the fovea and 5.0° eccentricity via an increment threshold approach using a 40-trial, yes-no adaptive Bayesian staircase procedure (QUEST). A high-speed eye tracking algorithm enabled real-time video stabilization and the delivery of diffraction-limited Goldmann I-sized stimuli (diameter = 6.5 arc min = ∼32 µm; λ = 680 nm) to targeted retinal loci for 200 ms. Test locations were selected either manually by the examiner or automatically using Fourier-based image registration. Cone spacing was assessed at each test location and sensitivity was plotted against retinal eccentricity. Finally, a 4.2 arc min stimulus was used to probe the angioscotoma associated with a blood vessel located at 2.5° eccentricity. RESULTS: Visual sensitivity decreases with eccentricity at a rate of -1.32 dB/deg (R = 0.60). The vertical and horizontal errors of the targeted stimulus delivery algorithm averaged 0.81 and 0.89 arc min (∼4 µm), respectively. Based on a predetermined exclusion criterion, the stimulus was successfully delivered to its targeted location in 90.1% of all trials. Automated recovery of test locations afforded the repeat testing of the same set of cones over a period of 3 months. Thresholds measured over a parafoveal blood vessel were 1.96 times higher (p < 0.05; one-tailed t-test) than those measured in directly adjacent retina. CONCLUSIONS: AOSLO-based microperimetry has the potential to test visual sensitivity with fine retinotopic precision. Automated recovery of previously tested locations allows these measures to be tracked longitudinally. This approach can be implemented by researchers interested in establishing the functional correlates of photoreceptor mosaic structure in patients with retinal disease.


Subject(s)
Ophthalmoscopes/standards , Optics and Photonics , Retina/anatomy & histology , Retinal Diseases/diagnosis , Visual Field Tests/instrumentation , Adult , Equipment Design , Female , Humans , Male , Reference Values , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...