Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6801, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919278

ABSTRACT

Progressive supranuclear palsy (PSP) is a neurodegenerative parkinsonian disorder characterized by cell-type-specific tau lesions in neurons and glia. Prior work uncovered transcriptome changes in human PSP brains, although their cell-specificity is unknown. Further, systematic data integration and experimental validation platforms to prioritize brain transcriptional perturbations as therapeutic targets in PSP are currently lacking. In this study, we combine bulk tissue (n = 408) and single nucleus RNAseq (n = 34) data from PSP and control brains with transcriptome data from a mouse tauopathy and experimental validations in Drosophila tau models for systematic discovery of high-confidence expression changes in PSP with therapeutic potential. We discover, replicate, and annotate thousands of differentially expressed genes in PSP, many of which reside in glia-enriched co-expression modules and cells. We prioritize DDR2, STOM, and KANK2 as promising therapeutic targets in PSP with striking cross-species validations. We share our findings and data via our interactive application tool PSP RNAseq Atlas ( https://rtools.mayo.edu/PSP_RNAseq_Atlas/ ). Our findings reveal robust glial transcriptome changes in PSP, provide a cross-species systems biology approach, and a tool for therapeutic target discoveries in PSP with potential application in other neurodegenerative diseases.


Subject(s)
Discoidin Domain Receptor 2 , Supranuclear Palsy, Progressive , Tauopathies , Humans , Animals , Mice , Supranuclear Palsy, Progressive/pathology , tau Proteins/metabolism , Systems Biology , Tauopathies/pathology , Neuroglia/metabolism
2.
Aging Cell ; 21(5): e13606, 2022 05.
Article in English | MEDLINE | ID: mdl-35388616

ABSTRACT

Microglia have fundamental roles in health and disease; however, effects of age, sex, and genetic factors on human microglia have not been fully explored. We applied bulk and single-cell approaches to comprehensively characterize human microglia transcriptomes and their associations with age, sex, and APOE. We identified a novel microglial signature, characterized its expression in bulk tissue and single-cell microglia transcriptomes. We discovered microglial co-expression network modules associated with age, sex, and APOE-ε4 that are enriched for lipid and carbohydrate metabolism genes. Integrated analyses of modules with single-cell transcriptomes revealed significant overlap between age-associated module genes and both pro-inflammatory and disease-associated microglial clusters. These modules and clusters harbor known neurodegenerative disease genes including APOE, PLCG2, and BIN1. Meta-analyses with published bulk and single-cell microglial datasets further supported our findings. Thus, these data represent a well-characterized human microglial transcriptome resource and highlight age, sex, and APOE-related microglial immunometabolism perturbations with potential relevance in neurodegeneration.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Alzheimer Disease/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Humans , Microglia/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Transcriptome/genetics
3.
J Clin Invest ; 132(2)2022 01 18.
Article in English | MEDLINE | ID: mdl-34813500

ABSTRACT

Vast numbers of differentially expressed genes and perturbed networks have been identified in Alzheimer's disease (AD), however, neither disease nor brain region specificity of these transcriptome alterations has been explored. Using RNA-Seq data from 231 temporal cortex and 224 cerebellum samples from patients with AD and progressive supranuclear palsy (PSP), a tauopathy, we identified a striking correlation in the directionality and magnitude of gene expression changes between these 2 neurodegenerative proteinopathies. Further, the transcriptomic changes in AD and PSP brains ware highly conserved between the temporal and cerebellar cortices, indicating that highly similar transcriptional changes occur in pathologically affected and grossly less affected, albeit functionally connected, areas of the brain. Shared up- or downregulated genes in AD and PSP are enriched in biological pathways. Many of these genes also have concordant protein changes and evidence of epigenetic control. These conserved transcriptomic alterations of 2 distinct proteinopathies in brain regions with and without significant gross neuropathology have broad implications. AD and other neurodegenerative diseases are likely characterized by common disease or compensatory pathways with widespread perturbations in the whole brain. These findings can be leveraged to develop multifaceted therapies and biomarkers that address these common, complex, and ubiquitous molecular alterations in neurodegenerative diseases.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Supranuclear Palsy, Progressive/metabolism , Transcriptome , Aged , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...