Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
EBioMedicine ; 91: 104555, 2023 May.
Article in English | MEDLINE | ID: mdl-37054630

ABSTRACT

BACKGROUND: Reprogramming of immunosuppressive tumor-associated macrophages (TAMs) presents an attractive therapeutic strategy in cancer. The aim of this study was to explore the role of macrophage CD5L protein in TAM activity and assess its potential as a therapeutic target. METHODS: Monoclonal antibodies (mAbs) against recombinant CD5L were raised by subcutaneous immunization of BALB/c mice. Peripheral blood monocytes were isolated from healthy donors and stimulated with IFN/LPS, IL4, IL10, and conditioned medium (CM) from different cancer cell lines in the presence of anti-CD5L mAb or controls. Subsequently, phenotypic markers, including CD5L, were quantified by flow cytometry, IF and RT-qPCR. Macrophage CD5L protein expression was studied in 55 human papillary lung adenocarcinoma (PAC) samples by IHC and IF. Anti-CD5L mAb and isotype control were administered intraperitoneally into a syngeneic Lewis Lung Carcinoma mouse model and tumor growth was measured. Tumor microenvironment (TME) changes were determined by flow cytometry, IHC, IF, Luminex, RNAseq and RT-qPCR. FINDINGS: Cancer cell lines CM induced an immunosuppressive phenotype (increase in CD163, CD206, MERTK, VEGF and CD5L) in cultured macrophages. Accordingly, high TAM expression of CD5L in PAC was associated with poor patient outcome (Log-rank (Mantel-Cox) test p = 0.02). We raised a new anti-CD5L mAb that blocked the immunosuppressive phenotype of macrophages in vitro. Its administration in vivo inhibited tumor progression of lung cancer by altering the intratumoral myeloid cell population profile and CD4+ T-cell exhaustion phenotype, thereby significantly modifying the TME and increasing the inflammatory milieu. INTERPRETATION: CD5L protein plays a key function in modulating the activity of macrophages and their interactions within the TME, which supports its role as a therapeutic target in cancer immunotherapy. FUNDING: For a full list of funding bodies, please see the Acknowledgements.


Subject(s)
Lung Neoplasms , Macrophages , Animals , Humans , Mice , Cell Line, Tumor , Immunotherapy , Lung Neoplasms/therapy , Macrophages/metabolism , Monocytes , Myeloid Cells/pathology , Tumor Microenvironment
3.
NPJ Precis Oncol ; 6(1): 68, 2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36153348

ABSTRACT

Resistance to aromatase inhibitor (AI) treatment and combined CDK4/6 inhibitor (CDK4/6i) and endocrine therapy (ET) are crucial clinical challenges in treating estrogen receptor-positive (ER+) breast cancer. Understanding the resistance mechanisms and identifying reliable predictive biomarkers and novel treatment combinations to overcome resistance are urgently needed. Herein, we show that upregulation of CDK6, p-CDK2, and/or cyclin E1 is associated with adaptation and resistance to AI-monotherapy and combined CDK4/6i and ET in ER+ advanced breast cancer. Importantly, co-targeting CDK2 and CDK4/6 with ET synergistically impairs cellular growth, induces cell cycle arrest and apoptosis, and delays progression in AI-resistant and combined CDK4/6i and fulvestrant-resistant cell models and in an AI-resistant autocrine breast tumor in a postmenopausal xenograft model. Analysis of CDK6, p-CDK2, and/or cyclin E1 expression as a combined biomarker in metastatic lesions of ER+ advanced breast cancer patients treated with AI-monotherapy or combined CDK4/6i and ET revealed a correlation between high biomarker expression and shorter progression-free survival (PFS), and the biomarker combination was an independent prognostic factor in both patients cohorts. Our study supports the clinical development of therapeutic strategies co-targeting ER, CDK4/6 and CDK2 following progression on AI-monotherapy or combined CDK4/6i and ET to improve survival of patients exhibiting high tumor levels of CDK6, p-CDK2, and/or cyclin E1.

5.
Nat Commun ; 12(1): 5112, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34433817

ABSTRACT

CDK4/6 inhibitors (CDK4/6i) combined with endocrine therapy have shown impressive efficacy in estrogen receptor-positive advanced breast cancer. However, most patients will eventually experience disease progression on this combination, underscoring the need for effective subsequent treatments or better initial therapies. Here, we show that triple inhibition with fulvestrant, CDK4/6i and AKT inhibitor (AKTi) durably impairs growth of breast cancer cells, prevents progression and reduces metastasis of tumor xenografts resistant to CDK4/6i-fulvestrant combination or fulvestrant alone. Importantly, switching from combined fulvestrant and CDK4/6i upon resistance to dual combination with AKTi and fulvestrant does not prevent tumor progression. Furthermore, triple combination with AKTi significantly inhibits growth of patient-derived xenografts resistant to combined CDK4/6i and fulvestrant. Finally, high phospho-AKT levels in metastasis of breast cancer patients treated with a combination of CDK4/6i and endocrine therapy correlates with shorter progression-free survival. Our findings support the clinical development of ER, CDK4/6 and AKT co-targeting strategies following progression on CDK4/6i and endocrine therapy combination, and in tumors exhibiting high phospho-AKT levels, which are associated with worse clinical outcome.


Subject(s)
Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Fulvestrant/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Proto-Oncogene Proteins c-akt/metabolism , Breast Neoplasms/enzymology , Breast Neoplasms/genetics , Cell Line, Tumor , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 6/metabolism , Disease Progression , Drug Resistance, Neoplasm , Drug Therapy, Combination , Female , Humans , Molecular Targeted Therapy , Proto-Oncogene Proteins c-akt/genetics
7.
Methods Mol Biol ; 2282: 43-56, 2021.
Article in English | MEDLINE | ID: mdl-33928569

ABSTRACT

Small interfering RNAs (siRNAs) are RNA molecules with promising therapeutic potential as a result of their selective mRNA cleavage. However, despite recent progress, low stability in the bloodstream is an impediment to successful administration in vivo. Thus, the availability of flexible and rapid methods for studying siRNA stability and vehicles is crucial for future novel siRNA-based therapeutics. Herein, we report a fast Förster resonance energy transfer (FRET) method based on agarose gel electrophoresis to evaluate the stability of siRNA in serum as well as siRNA interaction with serum proteins and enzymes.


Subject(s)
Blood Proteins/metabolism , Electrophoresis, Agar Gel , Fluorescence Resonance Energy Transfer , RNA Interference , RNA Stability , RNA, Small Interfering/metabolism , Single Molecule Imaging , Kinetics , Luminescent Measurements , RNA, Small Interfering/genetics , Research Design , Workflow
8.
Methods Mol Biol ; 2282: 353-376, 2021.
Article in English | MEDLINE | ID: mdl-33928584

ABSTRACT

SiRNAs may act as selective and potent therapeutics, but poor deliverability in vivo is a limitation. Among the recently proposed vectors, cell-penetrating peptides (CPPs), also referred as protein transduction domains (PTDs), allow siRNA stabilization and increased cellular uptake. This chapter aims to guide scientists in the preparation and characterization of CPP-siRNA complexes, particularly the evaluation of novel CPPs variants for siRNA encapsulation and delivery. Herein, we present a collection of methods to determine CPP-siRNA interaction, encapsulation, stability, conformation, transfection, and silencing efficiency.


Subject(s)
Cell-Penetrating Peptides/chemistry , RNA Interference , RNA, Small Interfering/genetics , Transfection , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line , Cell-Penetrating Peptides/metabolism , Female , Gene Expression Regulation, Neoplastic , Genes, Reporter , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , MCF-7 Cells , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , Research Design , Workflow , Red Fluorescent Protein
9.
ACS Med Chem Lett ; 11(2): 195-202, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32071688

ABSTRACT

Small interfering RNAs (siRNAs) are potent therapeutic molecules, but despite recent progress, their administration in vivo remains challenging due to their low stability in the bloodstream. Thus, techniques for investigating the stability of siRNA are fundamental for the development of efficient siRNA delivery systems. We designed a simple FRET electrophoresis method to dynamically evaluate serum siRNA stability in parallel with its interaction with the serum components. Each strand of the siRNA was labeled with the fluorophore carboxyfluorescein (FAM) at the 5'-end and the quencher carboxytetramethylrhodamine (TAMRA) at the 3'-end. After incubation in serum, molecular stability was proportional to the FRET efficiency that could be quantified in-gel by ImageJ analysis. Compared to the usual gel-shift and other plate-based FRET assays, this method is more sensitive and allows investigation of the stability of serum siRNA and siRNA-based nanoparticles, as well as the extrapolation of degradation kinetics in parallel with interaction analysis.

10.
Anal Biochem ; 542: 16-19, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29169777

ABSTRACT

Deleted in Malignant Brain Tumor 1 (DMBT1, alias SAG or gp340) is a pattern recognition receptor involved in immune defense, cell polarization, differentiation and regeneration. To investigate the role of the protein in physiological and pathological processes, the protein has often been isolated from saliva or produced in vitro and purified by a multistep affinity purification procedure using bacteria, followed by FPLC. Here, we compared a simple, one-step FPLC-SEC protocol for purification of recombinant DMBT1 6 kb, with that of the standard bacteria affinity purification-based protocol. Our data suggest that our FPLC-SEC protocol yields DMBT1 in a more native conformation.


Subject(s)
Receptors, Cell Surface/isolation & purification , Receptors, Cell Surface/metabolism , Calcium-Binding Proteins , Cell Line, Tumor , Chromatography, Gel , Chromatography, Liquid , DNA-Binding Proteins , Humans , Receptors, Cell Surface/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Streptococcus mutans/chemistry , Streptococcus mutans/metabolism , Tumor Suppressor Proteins
11.
Mol Ther Nucleic Acids ; 8: 264-276, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28918028

ABSTRACT

Small interfering RNA (siRNA) is a promising molecule for gene therapy, but its therapeutic administration remains problematic. Among the recently proposed vectors, cell-penetrating peptides show great promise in in vivo trials for siRNA delivery. Human protein DMBT1 (deleted in malignant brain tumor 1) is a pattern recognition molecule that interacts with polyanions and recognizes and aggregates bacteria. Taking advantage of these properties, we investigated whether specific synthetic DMBT1-derived peptides could be used to formulate nanoparticles for siRNA administration. Using an electrophoretic mobility shift assay and UV spectra, we identified two DMBT1 peptides that could encapsulate the siRNA with a self- and co-assembly mechanism. The complexes were stable for at least 2 hr in the presence of either fetal bovine serum (FBS) or RNase A, with peptide-dependent time span protection. ζ-potential, circular dichroism, dynamic light scattering, and transmission electron microscopy revealed negatively charged nanoparticles with an average diameter of 10-800 nm, depending on the reaction conditions, and a spherical or rice-shaped morphology, depending on the peptide and ß-helix conformation. We successfully transfected human MCF7 cells with fluorescein isothiocyanate (FITC)-DMBT1-peptide-Cy3-siRNA complexes. Finally, DMBT1 peptides encapsulating an siRNA targeting a fluorescent reporter gene showed efficient gene silencing in MCF7-recombinant cells. These results lay the foundation for a new research line to exploit DMBT1-peptide nanocomplexes for therapeutic siRNA delivery.

SELECTION OF CITATIONS
SEARCH DETAIL
...