Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 24(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732840

ABSTRACT

This paper introduces a novel approach to measure deformations in geomaterials using the recently developed 'Smart Pebble' sensors. Smart Pebbles were included in triaxial test specimens of unbound aggregates stabilized with geogrids. The sensors are equipped with an aggregate particle/position tracking algorithm that can manage uncertainty arising due to signal noise and random walk effects. Two Smart Pebbles were placed in each test specimen, one at specimen's mid-height, where a geogrid was installed in the mechanically stabilized specimen, and one towards the top of the specimen. Even with simple raw data processing, the trends on linear vertical acceleration indicated the ability of Smart Pebbles to assess the geomaterial configuration and applied stress states. Employing a Kalman filter-based algorithm, the Smart Pebble position coordinates were tracked during testing. The specimen's resilient deformations were simultaneously recorded. bender element shear wave transducer pairs were also installed on the specimens to further validate the Smart Pebble small-strain responses. The results indicate a close agreement between the BE sensors and Smart Pebbles estimates towards local stiffness enhancement quantification in the geogrid specimen. The study findings confirm the viability of using the Smart Pebbles in describing the resilient behavior of an aggregate material under repeated loading.

2.
Materials (Basel) ; 13(19)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987699

ABSTRACT

The research study described in this paper investigated the potential to use steel furnace slag (SFS) as a stabilizing additive for clayey soils. Even though SFS has limited applications in civil engineering infrastructure due to the formation of deleterious expansion in the presence of water, the free CaO and free MgO contents allow for the SFS to be a potentially suitable candidate for clayey soil stabilization and improvement. In this investigation, a kaolinite clay was stabilized with 10% and 15% ladle metallurgy furnace (LMF) slag fines by weight. This experimental study also included testing of the SFS mixtures with the activator calcium chloride (CaCl2), which was hypothesized to accelerate the hydration of the dicalcium silicate phase in the SFS, but the results show that the addition of CaCl2 was not found to be effective. Relative to the unmodified clay, the unconfined compressive strength increased by 67% and 91% when 10% and 15% LMF slag were utilized, respectively. Likewise, the dynamic modulus increased by 212% and 221% by adding 10% and 15% LMF slag, respectively. Specifically, the LMF slag fines are posited to primarily contribute to a mechanical rather than chemical stabilization mechanism. Overall, these findings suggest the effective utilization of SFS as a soil stabilization admixture to overcome problems associated with dispersive soils, but further research is required.

SELECTION OF CITATIONS
SEARCH DETAIL