Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Front Neurosci ; 18: 1353142, 2024.
Article in English | MEDLINE | ID: mdl-38449734

ABSTRACT

The Wnt pathway plays critical roles in neurogenesis. The expression of Axin2 is induced by Wnt/ß-catenin signaling, making this gene a reliable indicator of canonical Wnt activity. We employed pulse-chase genetic lineage tracing with the Axin2-CreERT2 allele to follow the fate of Axin2+ lineage in the adult hippocampal formation. We found Axin2 expressed in astrocytes, neurons and endothelial cells, as well as in the choroid plexus epithelia. Simultaneously with the induction of Axin2 fate mapping by tamoxifen, we marked the dividing cells with 5-ethynyl-2'-deoxyuridine (EdU). Tamoxifen induction led to a significant increase in labeled dentate gyrus granule cells three months later. However, none of these neurons showed any EdU signal. Conversely, six months after the pulse-chase labeling with tamoxifen/EdU, we identified granule neurons that were positive for both EdU and tdTomato lineage tracer in each animal. Our data indicates that Axin2 is expressed at multiple stages of adult granule neuron differentiation. Furthermore, these findings suggest that the integration process of adult-born neurons from specific cell lineages may require more time than previously thought.

2.
bioRxiv ; 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38352349

ABSTRACT

BACKGROUND: Cerebral cavernous malformations (CCM) are vascular lesions within the central nervous system, consisting of dilated and hemorrhage-prone capillaries. CCMs can cause debilitating neurological symptoms, and surgical excision or stereotactic radiosurgery are the only current treatment options. Meanwhile, transient blood-brain barrier opening (BBBO) with focused ultrasound (FUS) and microbubbles is now understood to exert potentially beneficial bioeffects, such as stimulation of neurogenesis and clearance of amyloid-ß. Here, we tested whether FUS BBBO could be deployed therapeutically to control CCM formation and progression in a clinically-representative murine model. METHODS: CCMs were induced in mice by postnatal, endothelial-specific Krit1 ablation. FUS was applied for BBBO with fixed peak-negative pressures (PNPs; 0.2-0.6 MPa) or passive cavitation detection-modulated PNPs. Magnetic resonance imaging (MRI) was used to target FUS treatments, evaluate safety, and measure longitudinal changes in CCM growth after BBBO. RESULTS: FUS BBBO elicited gadolinium accumulation primarily at the perilesional boundaries of CCMs, rather than lesion cores. Passive cavitation detection and gadolinium contrast enhancement were comparable in CCM and wild-type mice, indicating that Krit1 ablation does not confer differential sensitivity to FUS BBBO. Acutely, CCMs exposed to FUS BBBO remained structurally stable, with no signs of hemorrhage. Longitudinal MRI revealed that FUS BBBO halted the growth of 94% of CCMs treated in the study. At 1 month, FUS BBBO-treated lesions lost, on average, 9% of their pre-sonication volume. In contrast, non-sonicated control lesions grew to 670% of their initial volume. Lesion control with FUS BBBO was accompanied by a marked reduction in the area and mesenchymal appearance of Krit mutant endothelium. Strikingly, in mice receiving multiple BBBO treatments with fixed PNPs, de novo CCM formation was significantly reduced by 81%. Mock treatment plans on MRIs of patients with surgically inaccessible lesions revealed their lesions are amenable to FUS BBBO with current clinical technology. CONCLUSIONS: Our results establish FUS BBBO as a novel, non-invasive modality that can safely arrest murine CCM growth and prevent their de novo formation. As an incisionless, MR image-guided therapy with the ability to target eloquent brain locations, FUS BBBO offers an unparalleled potential to revolutionize the therapeutic experience and enhance the accessibility of treatments for CCM patients.

3.
bioRxiv ; 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38106115

ABSTRACT

The Wnt pathway plays critical roles in neurogenesis. The expression of Axin2 is induced by Wnt/ß-catenin signaling, making this gene a sensitive indicator of canonical Wnt activity. We employed pulse-chase genetic lineage tracing with the Axin2-CreERT2 allele to follow the fate of Axin2 -positive cells in the adult hippocampal formation. We found Axin2 expressed in astrocytes, neurons and endothelial cells, as well as in the choroid plexus epithelia. Simultaneously with tamoxifen induction of Axin2 fate mapping, the dividing cells were marked with 5-ethynyl-2'-deoxyuridine (EdU). Tamoxifen induction resulted in significant increase of dentate gyrus granule cells three months later; however, none of these neurons contained EdU signal. Conversely, six months after the tamoxifen/EdU pulse-chase labeling, EdU-positive granule neurons were identified in each animal. Our data imply that Axin2 is expressed at several different stages of adult granule neuron differentiation and suggest that the process of integration of the adult-born neurons from certain cell lineages may take longer than previously thought.

4.
Article in English | MEDLINE | ID: mdl-37545759

ABSTRACT

Background-: Transplantation of autologous mitochondria into ischemic tissue may mitigate injury caused by ischemia and reperfusion. Methods-: Using murine stroke models of middle cerebral artery occlusion, we sought to evaluate feasibility of delivery of viable mitochondria to ischemic brain parenchyma. We evaluated the effects of concurrent focused ultrasound activation of microbubbles, which serves to open the blood-brain barrier, on efficacy of delivery of mitochondria. Results-: Following intra-arterial delivery, mitochondria distribute through the stroked hemisphere and integrate into neural and glial cells in the brain parenchyma. Consistent with functional integration in the ischemic tissue, the transplanted mitochondria elevate concentration of adenosine triphosphate in the stroked hemisphere, reduce infarct volume and increase cell viability. Additional of focused ultrasound leads to improved blood brain barrier opening without hemorrhagic complications. Conclusions-: Our results have implications for the development of interventional strategies after ischemic stroke and suggest a novel potential modality of therapy after mechanical thrombectomy.

5.
Front Neurol ; 14: 1170675, 2023.
Article in English | MEDLINE | ID: mdl-37409019

ABSTRACT

Stroke remains a major burden on patients, families, and healthcare professionals, despite major advances in prevention, acute treatment, and rehabilitation. Preclinical basic research can help to better define mechanisms contributing to stroke pathology, and identify therapeutic interventions that can decrease ischemic injury and improve outcomes. Animal models play an essential role in this process, and mouse models are particularly well-suited due to their genetic accessibility and relatively low cost. Here, we review the focal cerebral ischemia models with an emphasis on the middle cerebral artery occlusion technique, a "gold standard" in surgical ischemic stroke models. Also, we highlight several histologic, genetic, and in vivo imaging approaches, including mouse stroke MRI techniques, that have the potential to enhance the rigor of preclinical stroke evaluation. Together, these efforts will pave the way for clinical interventions that can mitigate the negative impact of this devastating disease.

6.
Arterioscler Thromb Vasc Biol ; 43(6): 958-970, 2023 06.
Article in English | MEDLINE | ID: mdl-37078284

ABSTRACT

BACKGROUND: Cerebral cavernous malformations, also known as cavernous angiomas, are blood vessel abnormalities comprised of clusters of grossly enlarged and hemorrhage-prone capillaries. The prevalence in the general population, including asymptomatic cases, is estimated to be 0.5%. Some patients develop severe symptoms, including seizures and focal neurological deficits, whereas others remain asymptomatic. The causes of this remarkable presentation heterogeneity within a primarily monogenic disease remain poorly understood. METHODS: We established a chronic mouse model of cerebral cavernous malformations, induced by postnatal ablation of Krit1 with Pdgfb-CreERT2, and examined lesion progression in these mice with T2-weighted 7T magnetic resonance imaging (MRI). We also established a modified protocol for dynamic contrast-enhanced MRI and produced quantitative maps of gadolinium tracer gadobenate dimeglumine. After terminal imaging, brain slices were stained with antibodies against microglia, astrocytes, and endothelial cells. RESULTS: These mice develop cerebral cavernous malformations lesions gradually over 4 to 5 months of age throughout the brain. Precise volumetric analysis of individual lesions revealed nonmonotonous behavior, with some lesions temporarily growing smaller. However, the cumulative lesional volume invariably increased over time and after about 2 months followed a power trend. Using dynamic contrast-enhanced MRI, we produced quantitative maps of gadolinium in the lesions, indicating a high degree of heterogeneity in lesional permeability. MRI properties of the lesions were correlated with cellular markers for endothelial cells, astrocytes, and microglia. Multivariate comparisons of MRI properties of the lesions with cellular markers for endothelial and glial cells revealed that increased cell density surrounding lesions correlates with stability, whereas denser vasculature within and surrounding the lesions may correlate with high permeability. CONCLUSIONS: Our results lay a foundation for better understanding individual lesion properties and provide a comprehensive preclinical platform for testing new drug and gene therapies for controlling cerebral cavernous malformations.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Humans , Mice , Animals , Hemangioma, Cavernous, Central Nervous System/diagnostic imaging , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/pathology , Gadolinium , Endothelial Cells/pathology , Brain/pathology , Magnetic Resonance Imaging
7.
Neurocrit Care ; 37(Suppl 1): 133-138, 2022 06.
Article in English | MEDLINE | ID: mdl-35288861

ABSTRACT

Cortical spreading depolarizations (CSDs) are characterized by waves of diminished electroencephalography activity that propagate across the cortex with subsequent loss of ionic homeostasis. CSDs have been found in many pathological conditions, including migraine, traumatic brain injury, and ischemic stroke. Because of CSD-associated ionic and metabolic disturbances at the peri-infarct area after ischemic stroke, it is thought that CSDs exacerbate tissue infarction and worsen clinical outcomes. Microglia, the main innate immune cells in the brain, are among the first responders to brain tissue damage. Recent studies demonstrated that microglia play a critical role in CSD initiation and propagation. In this article, we discuss the significance of CSD in the setting of ischemic stroke and how microglia may modulate peri-infarct CSDs, also known as iso-electric depolarizations. Finally, we discuss the significance of microglial Ca2+ and how it might be used as a potential therapeutic target for patients with ischemic stroke.


Subject(s)
Brain Ischemia , Cortical Spreading Depression , Ischemic Stroke , Humans , Infarction , Microglia
8.
J Neurosurg ; 136(3): 917-926, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34416722

ABSTRACT

OBJECTIVE: The discovery of dural lymphatics has spurred interest in the mechanisms of drainage of interstitial fluid from the CNS, the anatomical components involved in clearance of macromolecules from the brain, mechanisms of entry and exit of immune components, and how these pathways may be involved in neurodegenerative diseases and cancer metastasis. In this study the authors describe connections between a subset of arachnoid granulations (AGs) and the venous circulation via intradural vascular channels (IVCs), which stain positively with established lymphatic markers. The authors postulate that the AGs may serve as a component of the human brain's lymphatic system. METHODS: AGs and IVCs were examined by high-resolution dissection under stereoscope bilaterally in 8 fresh and formalin-fixed human cadaveric heads. The superior sagittal sinus (SSS) and adjacent dura mater were immunostained with antibodies against Lyve-1 (lymphatic marker), podoplanin (lymphatic marker), CD45 (panhematopoietic marker), and DAPI (nuclear marker). RESULTS: AGs can be classified as intradural or interdural, depending on their location and site of drainage. Interdural AGs are distinct from the dura, adhere to arachnoid membranes, and occasionally open directly in the inferolateral wall or floor of the SSS, although some cross the infradural folds of the dura's inner layer to meet with intradural AGs and IVCs. Intradural AGs are located within the leaflets of the dura. The total number of openings from the AGs, lateral lacunae, and cortical veins into the SSS was 45 ± 5.62 per head. On average each cadaveric head contained 6 ± 1.30 intradural AGs. Some intradural AGs do not directly open into the SSS and use IVCs to connect to the venous circulation. Using immunostaining methods, the authors demonstrate that these tubular channels stain positively with vascular and lymphatic markers (Lyve-1, podoplanin). CONCLUSIONS: AGs consist of two subtypes with differing modes of drainage into the SSS. A subset of AGs located intradurally use tubular channels, which stain positively with vascular and lymphatic markers to connect to the venous lacunae and ultimately to the SSS. The present study suggests that AGs may function as a component of brain lymphatics. This finding has important clinical implications for cancer metastasis to and from the CNS and may shed light on mechanisms of altered clearance of macromolecules in the setting of neurodegenerative diseases.


Subject(s)
Neoplasms , Superior Sagittal Sinus , Arachnoid , Cadaver , Drainage , Dura Mater/pathology , Humans , Superior Sagittal Sinus/pathology
9.
World Neurosurg ; 163: e1-e42, 2022 07.
Article in English | MEDLINE | ID: mdl-34728391

ABSTRACT

BACKGROUND AND OBJECTIVE: The goal of this study was to systematically review the usefulness of serum biomarkers in the setting of ischemic stroke (IS) to predict long-term outcome. METHODS: A systematic literature review was performed using the PubMed and MEDLINE databases for studies published between 1986 and 2018. All studies assessing long-term functional outcome (defined as ≥30 days) after IS with respect to serum biomarkers were included. Data were extracted and pooled using a meta-analysis of odds ratios. RESULTS: Of the 2928 articles in the original literature search, 183 studies were selected. A total of 127 serum biomarkers were included. Biomarkers were grouped into several categories: inflammatory (n = 32), peptide/enzymatic (n = 30), oxidative/metabolic (n = 28), hormone/steroid based (n = 23), and hematologic/vascular (n = 14). The most commonly studied biomarkers in each category were found to be CRP, S100ß, albumin, copeptin, and D-dimer. With the exception of S100ß, all were found to be statistically associated with >30-day outcome after ischemic stroke. CONCLUSIONS: Serum-based biomarkers have the potential to predict functional outcome in patients with IS. This meta-analysis has identified C-reactive protein, albumin, copeptin, and D-dimer to be significantly associated with long-term outcome after IS. These biomarkers have the potential to serve as a platform for prognosticating stroke outcomes after 30 days. These serum biomarkers, some of which are routinely ordered, can be combined with imaging biomarkers and used in artificial intelligence algorithms to provide refined predictive outcomes after injury. These tools will assist physicians in providing guidance to families regarding long-term independence of patients.


Subject(s)
Brain Ischemia , Ischemic Stroke , Artificial Intelligence , Biomarkers , Brain Ischemia/diagnosis , C-Reactive Protein , Humans , Ischemic Stroke/diagnosis , Prognosis , S100 Calcium Binding Protein beta Subunit
10.
Stroke ; 52(10): 3374-3384, 2021 10.
Article in English | MEDLINE | ID: mdl-34404234

ABSTRACT

Background and Purpose: Aneurysmal subarachnoid hemorrhage (SAH) is associated with the development of delayed cognitive deficits. Neutrophil infiltration into the central nervous system is linked to the development of these deficits after SAH. It is however unclear how neutrophil activity influences central nervous system function in SAH. The present project aims to elucidate which neutrophil factors mediate central nervous system injury and cognitive deficits after SAH. Methods: Using a murine model of SAH and mice deficient in neutrophil effector functions, we determined which neutrophil effector function is critical to the development of deficits after SAH. In vivo and in vitro techniques were used to investigate possible pathways of neutrophils effect after SAH. Results: Our results show that mice lacking functional MPO (myeloperoxidase), a neutrophil enzyme, lack both the meningeal neutrophil infiltration (wild type, sham 872 cells/meninges versus SAH 3047, P=0.023; myeloperoxidase knockout [MPOKO], sham 1677 versus SAH 1636, P=NS) and erase the cognitive deficits on Barnes maze associated with SAH (MPOKO sham versus SAH, P=NS). The reintroduction of biologically active MPO, and its substrate hydrogen peroxide (H2O2), to the cerebrospinal fluid of MPOKO mice at the time of hemorrhage restores the spatial memory deficit observed after SAH (time to goal box MPOKO sham versus MPOKO+MPO/H2O2, P=0.001). We find evidence of changes in neurons, astrocytes, and microglia with MPO/H2O2 suggesting the effect of MPO may have complex interactions with many cell types. Neurons exposed to MPO/H2O2 show decreased calcium activity at baseline and after stimulation with potassium chloride. Although astrocytes and microglia are affected, changes seen in astrocytes are most consistent with inflammatory changes that likely affect neurons. Conclusions: These results implicate MPO as a mediator of neuronal dysfunction in SAH through its effect on both neurons and glia. These results show that, in SAH, the activity of innate immune cells in the meninges modulates the activity and function of the underlying brain tissue.


Subject(s)
Cerebral Veins/injuries , Neurons/pathology , Neutrophils/enzymology , Peroxidase/metabolism , Subarachnoid Hemorrhage/pathology , Animals , Astrocytes/pathology , Calcium Signaling , Cognition Disorders/etiology , Hydrogen Peroxide/cerebrospinal fluid , Hydrogen Peroxide/pharmacology , Inflammation/pathology , Maze Learning , Memory Disorders/etiology , Memory Disorders/psychology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroglia/enzymology , Peroxidase/genetics , Spatial Memory , Subarachnoid Hemorrhage/psychology
11.
J Vasc Res ; 58(3): 159-171, 2021.
Article in English | MEDLINE | ID: mdl-33706307

ABSTRACT

INTRODUCTION: Studies in Cx40-GCaMP2 mice, which express calcium biosensor GCaMP2 in the endothelium under connexin 40 promoter, have identified the unique properties of endothelial calcium signals. However, Cx40-GCaMP2 mouse is associated with a narrow dynamic range and lack of signal in the venous endothelium. Recent studies have proposed many GCaMPs (GCaMP5/6/7/8) with improved properties although their performance in endothelium-specific calcium studies is not known. METHODS: We characterized a newly developed mouse line that constitutively expresses GCaMP8 in the endothelium under the VE-cadherin (Cdh5-GCaMP8) promoter. Calcium signals through endothelial IP3 receptors and TRP vanilloid 4 (TRPV4) ion channels were recorded in mesenteric arteries (MAs) and veins from Cdh5-GCaMP8 and Cx40-GCaMP2 mice. RESULTS: Cdh5-GCaMP8 mice showed lower baseline fluorescence intensity, higher dynamic range, and higher amplitudes of individual calcium signals than Cx40-GCaMP2 mice. Importantly, Cdh5-GCaMP8 mice enabled the first recordings of discrete calcium signals in the intact venous endothelium and revealed striking differences in IP3 receptor and TRPV4 channel calcium signals between MAs and mesenteric veins. CONCLUSION: Our findings suggest that Cdh5-GCaMP8 mice represent significant improvements in dynamic range, sensitivity for low-intensity signals, and the ability to record calcium signals in venous endothelium.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Calcium Signaling , Calcium-Binding Proteins/metabolism , Calcium/metabolism , Connexins/metabolism , Endothelial Cells/metabolism , Green Fluorescent Proteins/metabolism , Animals , Antigens, CD/genetics , Biosensing Techniques , Cadherins/genetics , Calcium-Binding Proteins/genetics , Connexins/genetics , Green Fluorescent Proteins/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mesenteric Arteries/cytology , Mesenteric Arteries/metabolism , Mesenteric Veins/cytology , Mesenteric Veins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence , Promoter Regions, Genetic , TRPV Cation Channels/metabolism , Gap Junction alpha-5 Protein
13.
Glia ; 69(6): 1563-1582, 2021 06.
Article in English | MEDLINE | ID: mdl-33624376

ABSTRACT

The physiological and neurological correlates of plummeting brain osmolality during edema, traumatic CNS injury, and severe ischemia are compounded by neuroinflammation. Using multiple approaches, we investigated how retinal microglia respond to challenges mediated by increases in strain, osmotic gradients, and agonists of the stretch-activated cation channel TRPV4. Dissociated and intact microglia were TRPV4-immunoreactive and responded to the selective agonist GSK1016790A and substrate stretch with altered motility and elevations in intracellular calcium ([Ca2+ ]i ). Agonist- and hypotonicity-induced swelling was associated with a nonselective outwardly rectifying cation current, increased [Ca2+ ]i , and retraction of higher-order processes. The antagonist HC067047 reduced the extent of hypotonicity-induced microglial swelling and inhibited the suppressive effects of GSK1016790A and hypotonicity on microglial branching. Microglial TRPV4 signaling required intermediary activation of phospholipase A2 (PLA2), cytochrome P450, and epoxyeicosatrienoic acid production (EETs). The expression pattern of vanilloid thermoTrp genes in retinal microglia was markedly different from retinal neurons, astrocytes, and cortical microglia. These results suggest that TRPV4 represents a primary retinal microglial sensor of osmochallenges under physiological and pathological conditions. Its activation, associated with PLA2, modulates calcium signaling and cell architecture. TRPV4 inhibition might be a useful strategy to suppress microglial overactivation in the swollen and edematous CNS.


Subject(s)
Microglia , TRPV Cation Channels/metabolism , Calcium/metabolism , Calcium Signaling , Humans , Microglia/metabolism , Neuroglia/metabolism , Neuroinflammatory Diseases , TRPV Cation Channels/genetics
14.
Stroke ; 52(1): 274-283, 2021 01.
Article in English | MEDLINE | ID: mdl-33161850

ABSTRACT

BACKGROUND AND PURPOSE: Ischemic injury triggers multiple pathological responses in the brain tissue, including spreading depolarizations across the cerebral cortex (cortical spreading depolarizations [CSD]). Microglia have been recently shown to play a significant role in the propagation of CSD. However, the intracellular responses of myeloid cells during ischemic stroke have not been investigated. METHODS: We have studied intracellular calcium activity in cortical microglia in the stroke model of the middle cerebral artery occlusion, using the murine Polr2a-based and Cre-dependent GCaMP5 and tdTomato reporter (PC::G5-tdT). High-speed 2-photon microscopy through cranial windows was employed to record signals from genetically encoded indicators of calcium. Inflammatory stimuli and pharmacological inhibition were used to modulate microglial calcium responses in the somatosensory cortex. RESULTS: In vivo imaging revealed periodical calcium activity in microglia during the hyperacute phase of ischemic stroke. This activity was more frequent during the first 6 hours after occlusion, but the amplitudes of calcium transients became larger at later time points. Consistent with CSD nature of these events, we reproducibly triggered comparable calcium transients with microinjections of potassium chloride (KCl) into adjacent cortical areas. Furthermore, lipopolysaccharide-induced peripheral inflammation, mimicking sterile inflammation during ischemic stroke, produced significantly greater microglial calcium transients during CSD. Finally, in vivo pharmacological analysis with CRAC (calcium release-activated channel) inhibitor CM-EX-137 demonstrated that CSD-associated microglial calcium transients after KCl microinjections are mediated at least in part by the CRAC mechanism. CONCLUSIONS: Our findings demonstrate that microglia participate in ischemic brain injury via previously undetected mechanisms, which may provide new avenues for therapeutic interventions.


Subject(s)
Calcium Signaling , Ischemic Stroke/physiopathology , Microglia , Acute Disease , Animals , Calcium Channel Blockers/pharmacology , Calcium Signaling/drug effects , Encephalitis/chemically induced , Encephalitis/physiopathology , Image Processing, Computer-Assisted , Infarction, Middle Cerebral Artery/physiopathology , Lipopolysaccharides , Mice , Microscopy, Fluorescence, Multiphoton , Myeloid Cells , Potassium Chloride/pharmacology , Somatosensory Cortex/physiopathology
15.
NPJ Regen Med ; 5(1): 22, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33298971

ABSTRACT

Mitochondria are fundamental for metabolic homeostasis in all multicellular eukaryotes. In the nervous system, mitochondria-generated adenosine triphosphate (ATP) is required to establish appropriate electrochemical gradients and reliable synaptic transmission. Notably, several mitochondrial defects have been identified in central nervous system disorders. Membrane leakage and electrolyte imbalances, pro-apoptotic pathway activation, and mitophagy are among the mechanisms implicated in the pathogenesis of neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's disease, as well as ischemic stroke. In this review, we summarize mitochondrial pathways that contribute to disease progression. Further, we discuss pathological states that damaged mitochondria impose on normal nervous system processes and explore new therapeutic approaches to mitochondrial diseases.

16.
Brain Sci ; 10(12)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33316930

ABSTRACT

BACKGROUND: Studies in rodents have re-kindled interest in the study of lymphatics in the central nervous system. Animal studies have demonstrated that there is a connection between the subarachnoid space and deep cervical lymph nodes (DCLNs) through dural lymphatic vessels located in the skull base and the parasagittal area. OBJECTIVE: To describe the connection of the DCLNs and lymphatic tributaries with the intracranial space through the jugular foramen, and to address the anatomical features and variations of the DCLNs and associated lymphatic channels in the neck. METHODS: Twelve formalin-fixed human head and neck specimens were studied. Samples from the dura of the wall of the jugular foramen were obtained from two fresh human cadavers during rapid autopsy. The samples were immunostained with podoplanin and CD45 to highlight lymphatic channels and immune cells, respectively. RESULTS: The mean number of nodes for DCLNs was 6.91 ± 0.58 on both sides. The mean node length was 10.1 ± 5.13 mm, the mean width was 7.03 ± 1.9 mm, and the mean thickness was 4 ± 1.04 mm. Immunohistochemical staining from rapid autopsy samples demonstrated that lymphatic vessels pass from the intracranial compartment into the neck through the meninges at the jugular foramen, through tributaries that can be called intrajugular lymphatic vessels. CONCLUSIONS: The anatomical features of the DCLNs and their connections with intracranial lymphatic structures through the jugular foramen represent an important possible route for the spread of cancers to and from the central nervous system; therefore, it is essential to have an in-depth understanding of the anatomy of these lymphatic structures and their variations.

17.
Front Surg ; 7: 514247, 2020.
Article in English | MEDLINE | ID: mdl-33195382

ABSTRACT

Objective: The goal of this study was to systematically review functional mapping and reorganization that takes place in the setting of arteriovenous malformations (AVMs) and its potential impact on grading and surgical decision making. Methods: A systematic literature review was performed using the PubMed database for studies published between 1986 and 2019. Studies assessing brain mapping and functional reorganization in AVMs were included. Results: Of the total 84 articles identified in the original literature search, 12 studies were ultimately selected. This includes studies evaluating the impact of cortical reorganization on patient outcomes and factors impacting and triggering cortical reorganization in AVM. Conclusion: These studies demonstrate the utility of preoperative brain mapping and acknowledgment of functional reorganization in the setting of AVMs. While these findings led to alterations in Spetzler-Martin grading and subsequent surgical decision making, it remains unclear the clinical utility of this information when assessing patient outcomes. While promising, more research is required before recommendations can be made regarding functional brain mapping and cortical reorganization with respect to AVM surgery involving eloquent brain tissue.

18.
Neurosurgery ; 87(6): 1091-1097, 2020 11 16.
Article in English | MEDLINE | ID: mdl-32542365

ABSTRACT

Glioma continues to be a challenging disease process, making up the most common tumor type within the pediatric population. While low-grade gliomas are typically amenable to surgical resection, higher grade gliomas often require additional radiotherapy in conjunction with adjuvant chemotherapy. Molecular profiling of these lesions has led to the development of various pharmacologic and immunologic agents, although these modalities are not without great systemic toxicity. In addition, the molecular biology of adult glioma and pediatric glioma has been shown to differ substantially, making the application of current chemotherapies dubious in children and adolescents. For this reason, therapies with high tumor specificity based on pediatric tumor cell biology that spare healthy tissue are needed. Oncolytic virotherapy serves to fill this niche, as evidenced by renewed interest in this domain of cancer therapy. Initially discovered by chance in the early 20th century, virotherapy has emerged as a viable treatment option. With promising results based on preclinical studies, the authors review several oncolytic viruses, with a focus on molecular mechanism and efficacy of these viruses in tumor cell lines and murine models. In addition, current phase I clinical trials evaluating oncolytic virotherapy in the treatment of pediatric glioma are summarized.


Subject(s)
Glioma , Oncolytic Virotherapy , Oncolytic Viruses , Adolescent , Animals , Cell Line, Tumor , Child , Clinical Trials, Phase I as Topic , Glioma/therapy , Humans , Mice
19.
Neurosurg Focus ; 48(4): E17, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32234990

ABSTRACT

Arteriovenous malformation (AVM) presenting with epilepsy significantly impacts patient quality of life, and it should be considered very much a seizure disorder. Although hemorrhage prevention is the primary treatment aim of AVM surgery, seizure control should also be at the forefront of therapeutic management. Several hemodynamic and morphological characteristics of AVM have been identified to be associated with seizure presentation. This includes increased AVM flow, presence of long pial draining vein, venous outflow obstruction, and frontotemporal location, among other aspects. With the advent of high-throughput image processing and quantification methods, new radiographic attributes of AVM-related epilepsy have been identified. With respect to therapy, several treatment approaches are available, including conservative management or interventional modalities; this includes microsurgery, radiosurgery, and embolization or a combination thereof. Many studies, especially in the domain of microsurgery and radiosurgery, evaluate both techniques with respect to seizure outcomes. The advantage of microsurgery lies in superior AVM obliteration rates and swift seizure response. In addition, by incorporating electrophysiological monitoring during AVM resection, adjacent or even remote epileptogenic foci can be identified, leading to extended lesionectomy and improved seizure control. Radiosurgery, despite resulting in reduced AVM obliteration and prolonged time to seizure freedom, avoids the risks of surgery altogether and may provide seizure control through various antiepileptic mechanisms. Embolization continues to be used as an adjuvant for both microsurgery and radiosurgery. In this study, the authors review the latest imaging techniques in characterizing AVM-related epilepsy, in addition to reviewing each treatment modality.


Subject(s)
Epilepsy/diagnosis , Epilepsy/surgery , Intracranial Arteriovenous Malformations/surgery , Seizures/surgery , Embolization, Therapeutic/methods , Female , Humans , Intracranial Arteriovenous Malformations/diagnosis , Male , Quality of Life , Radiosurgery/methods , Retrospective Studies , Treatment Outcome
20.
J Clin Neurosci ; 73: 209-214, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32057609

ABSTRACT

Surgical resection of basal ganglia (BG) and thalamic cavernous malformations (CMs) has not yet become standardized in the field of neurosurgery due to the eloquent location of these lesions and the relative paucity of literature on the subject. This review presents a consolidation of the available literature on outcomes and complication rates after surgical resection of these lesions. A systematic literature review was performed via PubMed database for articles published between 1985 and 2019. Studies comprising ≥2 patients receiving surgery for BG or thalamic CMs with available follow-up data were included. Pooled data included patient demographics, CM preoperative characteristics, and surgical outcomes Twenty studies comprising 227 patients were included for analysis. Complete resection was achieved in 94.7% (fixed-effects pooled estimate [FE]: 94.9%[91.0%-97.8%]; random-effects pooled estimate [RE]: 90.0%[79.8%-96.9%]), and hemorrhage of incompletely resected CMs occurred in 50% (FE: 55.9%[25.9%-83.6%]; RE: 55.9%[25.9%-83.6%]) of patients. Early morbidity was observed in 24.0% (FE: 24.9%[17.8%-32.6%]; RE: 24.9%[17.8%-32.6%]). At final follow-up, 67.3% (FE: 67.7%[58.8%-76.0%]; RE: 67.8%[52.2%-81.6%]) and 20.6% (FE: 20.6%[13.6%-28.6%]; RE: 20.9%[9.8%-34.9%]) had improvement and stability of preoperative symptoms, respectively. Mortality rate was 1.3% (FE: 2.3%[0.6%-5.1%]; RE: 2.3%[0.6%-5.1%]). Therefore, high cure rates with low rates of postoperative morbidity can be achieved in BG or thalamic CM surgery. Most patients had improved neurological function at final follow-up. Complete resection should be attempted to reduce rates of repeat hemorrhage.


Subject(s)
Basal Ganglia/pathology , Brain Neoplasms/surgery , Hemangioma, Cavernous, Central Nervous System/surgery , Neurosurgical Procedures/methods , Thalamus/pathology , Adult , Basal Ganglia/surgery , Female , Humans , Male , Middle Aged , Neurosurgical Procedures/adverse effects , Thalamus/surgery , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...