Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Oncogene ; 42(4): 278-292, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36258022

ABSTRACT

Dissemination of cancer cells from the primary tumor into distant body tissues and organs is the leading cause of death in cancer patients. While most clinical strategies aim to reduce or impede the growth of the primary tumor, no treatment to eradicate metastatic cancer exists at present. Metastasis is mediated by feet-like cytoskeletal structures called invadopodia which allow cells to penetrate through the basement membrane and intravasate into blood vessels during their spread to distant tissues and organs. The non-receptor tyrosine kinase Pyk2 is highly expressed in breast cancer, where it mediates invadopodia formation and function via interaction with the actin-nucleation-promoting factor cortactin. Here, we designed a cell-permeable peptide inhibitor that contains the second proline-rich region (PRR2) sequence of Pyk2, which binds to the SH3 domain of cortactin and inhibits the interaction between Pyk2 and cortactin in invadopodia. The Pyk2-PRR2 peptide blocks spontaneous lung metastasis in immune-competent mice by inhibiting cortactin tyrosine phosphorylation and actin polymerization-mediated maturation and activation of invadopodia, leading to reduced MMP-dependent tumor cell invasiveness. The native structure of the Pyk2-PRR2:cortactin-SH3 complex was determined using nuclear magnetic resonance (NMR), revealing an extended class II interaction surface spanning the canonical binding groove and a second hydrophobic surface which significantly contributes to ligand affinity. Using structure-guided design, we created a mutant peptide lacking critical residues involved in binding that failed to inhibit invadopodia maturation and function and consequent metastatic dissemination in mice. Our findings shed light on the specific molecular interactions between Pyk2 and cortactin and may lead to the development of novel strategies for preventing dissemination of primary breast tumors predicted at the time of diagnosis to be highly metastatic, and of secondary tumors that have already spread to other parts of the body.


Subject(s)
Breast Neoplasms , Cortactin , Podosomes , Animals , Mice , Actins/metabolism , Cell Line, Tumor , Cortactin/metabolism , Focal Adhesion Kinase 2/metabolism , Neoplasm Invasiveness/pathology , Podosomes/metabolism , Breast Neoplasms/pathology
3.
Mol Biol Cell ; 32(21): ar17, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34432482

ABSTRACT

Focal adhesion kinase (FAK) is well established as a regulator of cell migration, but whether and how the closely related proline-rich tyrosine kinase 2 (Pyk2) regulates fibroblast motility is still under debate. Using mouse embryonic fibroblasts (MEFs) from Pyk2-/- mice, we show here, for the first time, that lack of Pyk2 significantly impairs both random and directed fibroblast motility. Pyk2-/- MEFs show reduced cell-edge protrusion dynamics, which is dependent on both the kinase and protein-protein binding activities of Pyk2. Using bioinformatics analysis of in vitro high- throughput screens followed by text mining, we identified CrkI/II as novel substrates and interactors of Pyk2. Knockdown of CrkI/II shows altered dynamics of cell-edge protrusions, which is similar to the phenotype observed in Pyk2-/- MEFs. Moreover, epistasis experiments suggest that Pyk2 regulates the dynamics of cell-edge protrusions via direct and indirect interactions with Crk that enable both activation and down-regulation of Crk-mediated cytoskeletal signaling. This complex mechanism may enable fine-tuning of cell-edge protrusion dynamics and consequent cell migration on the one hand together with tight regulation of cell motility, a process that should be strictly limited to specific time and context in normal cells, on the other hand.


Subject(s)
Cell Movement/genetics , Fibroblasts/metabolism , Focal Adhesion Kinase 2/metabolism , Animals , Cell Movement/physiology , Cell Surface Extensions/metabolism , Cytoskeleton/metabolism , Focal Adhesion Kinase 2/physiology , Mice , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Protein Binding , Proto-Oncogene Proteins c-crk/genetics , Proto-Oncogene Proteins c-crk/metabolism , Signal Transduction
4.
Cells ; 8(11)2019 11 05.
Article in English | MEDLINE | ID: mdl-31694343

ABSTRACT

Hepatocellular carcinoma (HCC) represents the fifth most common cancer worldwide and the third cause of cancer-related mortality. Hepatitis C virus (HCV) is the leading cause of chronic hepatitis, which often results in liver fibrosis, cirrhosis, and eventually HCC. HCV is the most common risk factor for HCC in western countries and leads to a more aggressive and invasive disease with poorer patient survival rates. However, the mechanism by which the virus induces the metastatic spread of HCC tumor cells through the regulation of invadopodia, the key features of invasive cancer, is still unknown. Here, the integration of transcriptome with functional kinome screen revealed that HCV infection induced invasion and invadopodia-related gene expression combined with activation of host cell tyrosine kinases, leading to invadopodia formation and maturation and consequent cell invasiveness in vitro and in vivo. The promotion of invadopodia following HCV infection was mediated by the sustained stimulation of epidermal growth factor receptor (EGFR) via the viral NS3/4A protease that inactivates the T-cell protein tyrosine phosphatase (TC-PTP), which inhibits EGFR signaling. Characterization of an invadopodia-associated gene signature in HCV-mediated HCC tumors correlated with the invasiveness of HCC and poor patient prognosis. These findings might lead to new prognostic and therapeutic strategies for virus-mediated invasive cancer.


Subject(s)
Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Hepacivirus/pathogenicity , Hepatitis C/pathology , Liver Neoplasms/pathology , Liver Neoplasms/virology , Neoplasm Invasiveness/pathology , Animals , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , ErbB Receptors/genetics , Gene Expression/genetics , Hepatitis C/virology , Humans , Liver Neoplasms/genetics , Male , Mice , Mice, Inbred NOD , Mice, SCID , Podosomes/genetics , Podosomes/virology , Prognosis , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Signal Transduction/genetics
5.
Endocrine ; 66(2): 210-219, 2019 11.
Article in English | MEDLINE | ID: mdl-31435861

ABSTRACT

PURPOSE: A glycemic control marker to predict neonatal diabetic complications is unavailable. We aimed to examine if 1,5-anhydroglucitol (1,5-AG) can predict neonatal complications in women with diabetes in pregnancy. METHODS: Prospective observational study from December 2011 to August 2013. We recruited 105 women, 70 diabetic (gestational and pregestational) and 35 nondiabetic. 1,5-AG at birth was compared between the two groups. In the diabetic group 1,5-AG, HbA1c, and fructosamine were measured before glycemic control initiation (first visit), after 4-6 weeks (second visit), and at delivery. Women were divided to poor (1,5-AG values below median at birth) and good (1,5-AG values at median and above) glycemic control groups. Mean daily glucose charts were collected. The primary outcome was a composite of neonatal diabetic complications: respiratory distress, hypoglycemia, polycythemia, hyperbilirubinemia, and large for gestational age. RESULTS: Mean 1,5-AG in the nondiabetic group was similar to that of the diabetic group without the composite outcome and was significantly higher than in the diabetic group with the composite outcome. The rate of the composite outcome was higher in the poor glycemic control group compared with the good glycemic control group (adjusted odds ratio (OR) 3.8 95% CI [1.2-12.3]). Only 1,5-AG was inversely associated with the composite outcome at all time points; the second visit was the only independent risk factor in multivariable logistic regression (OR 0.7 95% CI 0.54-0.91). The rest of the glycemic markers were not associated with neonatal composite outcome. CONCLUSIONS: 1,5-AG is inversely associated with neonatal diabetic complications and is superior to other glycemic markers in predicting those complications.


Subject(s)
Blood Glucose/analysis , Deoxyglucose/blood , Diabetes Mellitus, Type 2/blood , Diabetes, Gestational/blood , Infant, Newborn, Diseases/diagnosis , Pregnancy in Diabetics/blood , Female , Fructosamine/blood , Glycated Hemoglobin/analysis , Humans , Infant, Newborn , Pregnancy , Prospective Studies , Risk Factors
6.
J Cell Biol ; 217(1): 375-395, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29133485

ABSTRACT

The nonreceptor tyrosine kinase Pyk2 is highly expressed in invasive breast cancer, but the mechanism by which it potentiates tumor cell invasiveness is unclear at present. Using high-throughput protein array screening and bioinformatic analysis, we identified cortactin as a novel substrate and interactor of proline-rich tyrosine kinase 2 (Pyk2). Pyk2 colocalizes with cortactin to invadopodia of invasive breast cancer cells, where it mediates epidermal growth factor-induced cortactin tyrosine phosphorylation both directly and indirectly via Src-mediated Abl-related gene (Arg) activation, leading to actin polymerization in invadopodia, extracellular matrix degradation, and tumor cell invasion. Both Pyk2 and the closely related focal adhesion kinase (FAK) regulate tumor cell invasion, albeit via distinct mechanisms. Although Pyk2 regulates tumor cell invasion by controlling invadopodium-mediated functions, FAK controls invasiveness of tumor cells by regulating focal adhesion-mediated motility. Collectively, our findings identify Pyk2 as a unique mediator of invadopodium formation and function and also provide a novel insight into the mechanisms by which Pyk2 mediates tumor cell invasion.


Subject(s)
Breast Neoplasms/pathology , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 2/metabolism , Focal Adhesions/pathology , Podosomes/pathology , Animals , Cell Line, Tumor , Cell Movement/physiology , Cortactin/metabolism , Female , Focal Adhesion Kinase 2/genetics , Gene Knockdown Techniques , High-Throughput Screening Assays , Humans , Neoplasm Invasiveness/pathology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...