Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(7): e18335, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37519698

ABSTRACT

Background: Stokes-Adams attacks presenting as convulsions may be difficult to distinguish from epilepsy. Stokes-Adams Syndrome is a transient abrupt collapse into unconsciousness due to a sudden but pronounced decrease in cardiac output caused by change in heart rate and rhythm, resulting in syncope. Case presentation: We report a patient who presented with multiple convulsive episodes managed as epilepsy, until she was found to have paroxysmal total atrioventricular block. Previously, she had been treated with anti-seizure medications without relief. Ventricular standstill was seen on cardiac monitoring and the convulsive episodes were determined as Stokes-Adams attacks. She underwent percutaneous coronary intervention and has been free of convulsive episodes since. Conclusion: Awareness of distinction between seizures/epilepsy and convulsive syncope is important and may be life-saving. A good clinical history as well as simple non-invasive tests such as electroencephalogram and electrocardiogram are important in establishing correct diagnosis.

2.
Microbiome ; 10(1): 127, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35965349

ABSTRACT

BACKGROUND: The emergence of antimicrobial resistance is a major threat to global health and has placed pressure on the livestock industry to eliminate the use of antibiotic growth promotants (AGPs) as feed additives. To mitigate their removal, efficacious alternatives are required. AGPs are thought to operate through modulating the gut microbiome to limit opportunities for colonization by pathogens, increase nutrient utilization, and reduce inflammation. However, little is known concerning the underlying mechanisms. Previous studies investigating the effects of AGPs on the poultry gut microbiome have largely focused on 16S rDNA surveys based on a single gastrointestinal (GI) site, diet, and/or timepoint, resulting in an inconsistent view of their impact on community composition. METHODS: In this study, we perform a systematic investigation of both the composition and function of the chicken gut microbiome, in response to AGPs. Birds were raised under two different diets and AGP treatments, and 16S rDNA surveys applied to six GI sites sampled at three key timepoints of the poultry life cycle. Functional investigations were performed through metatranscriptomics analyses and metabolomics. RESULTS: Our study reveals a more nuanced view of the impact of AGPs, dependent on age of bird, diet, and intestinal site sampled. Although AGPs have a limited impact on taxonomic abundances, they do appear to redefine influential taxa that may promote the exclusion of other taxa. Microbiome expression profiles further reveal a complex landscape in both the expression and taxonomic representation of multiple pathways including cell wall biogenesis, antimicrobial resistance, and several involved in energy, amino acid, and nucleotide metabolism. Many AGP-induced changes in metabolic enzyme expression likely serve to redirect metabolic flux with the potential to regulate bacterial growth or produce metabolites that impact the host. CONCLUSIONS: As alternative feed additives are developed to mimic the action of AGPs, our study highlights the need to ensure such alternatives result in functional changes that are consistent with site-, age-, and diet-associated taxa. The genes and pathways identified in this study are therefore expected to drive future studies, applying tools such as community-based metabolic modeling, focusing on the mechanistic impact of different dietary regimes on the microbiome. Consequently, the data generated in this study will be crucial for the development of next-generation feed additives targeting gut health and poultry production. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Animals , Anti-Bacterial Agents/pharmacology , Chickens , DNA, Ribosomal , Dietary Supplements , Gastrointestinal Microbiome/genetics
3.
Anim Microbiome ; 4(1): 2, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34980288

ABSTRACT

BACKGROUND: Antibiotic growth promoters (AGPs) are commonly used within poultry production to improve feed conversion, bird growth, and reduce morbidity and mortality from clinical and subclinical diseases. Due to the association between AGP usage and rising antimicrobial resistance, the industry has explored new strategies including the use of probiotics and other microbial-based interventions to promote the development of a healthy microbiome in birds and mitigate against infections associated with food safety and food security. While previous studies have largely focused on the ability of probiotics to protect against Clostridium perfringens and Salmonella enterica, much less is known concerning their impact on Campylobacter jejuni, a near commensal of the chicken gut microbiome that nevertheless is a major cause of food poisoning in humans. RESULTS: Here we compare the efficacy of four microbial interventions (two single strain probiotics, the bacterium-Pediococcus acidilactici, and the yeast-Saccharomyces cerevisiae boulardii; and two complex, competitive exclusion, consortia-Aviguard and CEL) to bacitracin, a commonly used AGP, to modulate chicken gut microbiota and subsequently impact C. jejuni infection in poultry. Cecal samples were harvested at 30- and 39-days post hatch to assess Campylobacter burden and examine their impact on the gut microbiota. While the different treatments did not significantly decrease C. jejuni burden relative to the untreated controls, both complex consortia resulted in significant decreases relative to treatment with bacitracin. Analysis of 16S rDNA profiles revealed a distinct microbial signature associated with each microbial intervention. For example, treatment with Aviguard and CEL increased the relative abundance of Bacteroidaceae and Rikenellaceae respectively. Furthermore, Aviguard promoted a less complex microbial community compared to other treatments. CONCLUSIONS: Depending upon the individual needs of the producer, our results illustrate the potential of each microbial interventions to serve flock-specific requirements.

SELECTION OF CITATIONS
SEARCH DETAIL
...