Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Bipolar Disord ; 26(4): 376-387, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558302

ABSTRACT

BACKGROUND: Treatment of refractory bipolar disorder (BD) is extremely challenging. Deep brain stimulation (DBS) holds promise as an effective treatment intervention. However, we still understand very little about the mechanisms of DBS and its application on BD. AIM: The present study aimed to investigate the behavioural and neurochemical effects of ventral tegmental area (VTA) DBS in an animal model of mania induced by methamphetamine (m-amph). METHODS: Wistar rats were given 14 days of m-amph injections, and on the last day, animals were submitted to 20 min of VTA DBS in two different patterns: intermittent low-frequency stimulation (LFS) or continuous high-frequency stimulation (HFS). Immediately after DBS, manic-like behaviour and nucleus accumbens (NAc) phasic dopamine (DA) release were evaluated in different groups of animals through open-field tests and fast-scan cyclic voltammetry. Levels of NAc dopaminergic markers were evaluated by immunohistochemistry. RESULTS: M-amph induced hyperlocomotion in the animals and both DBS parameters reversed this alteration. M-amph increased DA reuptake time post-sham compared to baseline levels, and both LFS and HFS were able to block this alteration. LFS was also able to reduce phasic DA release when compared to baseline. LFS was able to increase dopamine transporter (DAT) expression in the NAc. CONCLUSION: These results demonstrate that both VTA LFS and HFS DBS exert anti-manic effects and modulation of DA dynamics in the NAc. More specifically the increase in DA reuptake driven by increased DAT expression may serve as a potential mechanism by which VTA DBS exerts its anti-manic effects.


Subject(s)
Deep Brain Stimulation , Disease Models, Animal , Mania , Methamphetamine , Rats, Wistar , Ventral Tegmental Area , Animals , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism , Methamphetamine/pharmacology , Male , Rats , Mania/therapy , Mania/chemically induced , Central Nervous System Stimulants/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Motor Activity/drug effects , Motor Activity/physiology , Bipolar Disorder/therapy , Bipolar Disorder/chemically induced
2.
IEEE Open J Eng Med Biol ; 5: 75-85, 2024.
Article in English | MEDLINE | ID: mdl-38487099

ABSTRACT

Goal: Dynamically monitoring serotonin in real-time within target brain regions would significantly improve the diagnostic and therapeutic approaches to a variety of neurological and psychiatric disorders. Current systems for measuring serotonin lack immediacy and portability and are bulky and expensive. Methods: We present a new miniaturised device, named SmartFSCV, designed to monitor dynamic changes of serotonin using fast-scan cyclic voltammetry (FSCV). This device outputs a precision voltage potential between -3 to +3 V, and measures current between -1.5 to +1.5 µA with nano-ampere accuracy. The device can output modifiable arbitrary waveforms for various measurements and uses an N-shaped waveform at a scan-rate of 1000 V/s for sensing serotonin. Results: Four experiments were conducted to validate SmartFSCV: static bench test, dynamic serotonin test and two artificial intelligence (AI) algorithm tests. Conclusions: These tests confirmed the ability of SmartFSCV to accurately sense and make informed decisions about the presence of serotonin using AI.

3.
Transl Psychiatry ; 14(1): 93, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351009

ABSTRACT

There is increasing interest in individualizing treatment selection for more than 25 regulatory approved treatments for major depressive disorder (MDD). Despite an inconclusive efficacy evidence base, antidepressants (ADs) are prescribed for the depressive phase of bipolar disorder (BD) with oftentimes, an inadequate treatment response and or clinical concern for mood destabilization. This study explored the relationship between antidepressant response in MDD and antidepressant-associated treatment emergent mania (TEM) in BD. We conducted a genome-wide association study (GWAS) and polygenic score analysis of TEM and tested its association in a subset of BD-type I patients treated with SSRIs or SNRIs. Our results did not identify any genome-wide significant variants although, we found that a higher polygenic score (PGS) for antidepressant response in MDD was associated with higher odds of TEM in BD. Future studies with larger transdiagnostic depressed cohorts treated with antidepressants are encouraged to identify a neurobiological mechanism associated with a spectrum of depression improvement from response to emergent mania.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Humans , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Bipolar Disorder/chemically induced , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Mania/chemically induced , Mania/drug therapy , Depression , Pharmacogenetics , Genome-Wide Association Study , Antidepressive Agents/therapeutic use
4.
J Affect Disord ; 348: 143-151, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38142892

ABSTRACT

OBJECTIVE: We conducted an open-label clinical trial ("Bio-K") using IV ketamine for treatment-resistant depression to identify biomarkers linked to remission. Here, we report the clinical efficacy and side effect outcomes of Bio-K. METHODS: Across 4 US sites, 75 patients ages 18-65 with treatment-refractory unipolar or bipolar depression received 3 IV ketamine infusions over an 11-day period. Key exclusion criteria were psychotic symptoms, significant substance abuse, unstable medical conditions, and any use of cannabis. Pre-existing antidepressant medication was maintained. Primary outcome was remission as measured by Montgomery-Asberg Depression Rating Scale (MADRS), with secondary outcome of 50 % reduction in Beck Suicide Scale score. Safety monitoring and varying durations of infusions were also key parameters. RESULTS: Using remission as MADRS score <10, after 3 infusions 52 % achieved remission, with 67 % achieving response. Of those achieving response after a single infusion, 66 % (22 of 33) reached remission after 3 infusions, while 40 % (16 of 40) non-responders after the first infusion went on to achieve remission after 3 infusions. Only 20 % of non-responders after 2 infusions achieved remission. Most (81 %) participants had significant suicidal ideation at baseline; of these, two-thirds (67 %) experienced at least a 50 % reduction in suicidality. Side effects were minimal. Uniquely, we had three different types of infusion categories, with individuals receiving: (1) slow (100-min) infusions only or (2) regular (40-min) infusions only or (3) a mix of infusion durations. These three infusion groups showed comparable safety and efficacy. Exploration of clinical factors revealed no link between BMI, age, or gender to remission. CONCLUSIONS: The consistency of outcomes across 4 clinical sites and across multiple instruments, suggests high acute efficacy and safety of IV ketamine for serious depressive episodes. Duration of infusion did not alter outcomes. Meaningfully, 40 % of non-responders after a single infusion did reach remission subsequently, while only 20 % of non-responders after 2 infusions achieved remission, suggesting early response is suggestive for eventual remission. Our data on varying ketamine infusion duration adds novel insights into the clinical administration of this new treatment for refractory and severe patients. Our limitations included a lack of a control group, necessitating caution about conclusions of efficacy, balanced by the utility of reporting "real-world" outcomes across multiple clinical sites. We could also not separately analyze results for bipolar disorder due to small numbers. Together, the Bio-K clinical results are promising and provide significant sample sizes for forthcoming biological markers analyses.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Depressive Disorder, Treatment-Resistant , Ketamine , Humans , Ketamine/adverse effects , Depressive Disorder, Major/drug therapy , Depressive Disorder, Treatment-Resistant/drug therapy , Depressive Disorder, Treatment-Resistant/diagnosis , Bipolar Disorder/drug therapy , Treatment Outcome , Infusions, Intravenous , Biomarkers , Depression
5.
Front Pharmacol ; 14: 1199655, 2023.
Article in English | MEDLINE | ID: mdl-37408764

ABSTRACT

Introduction: Opioids are the leading cause of overdose death in the United States, accounting for almost 70,000 deaths in 2020. Deep brain stimulation (DBS) is a promising new treatment for substance use disorders. Here, we hypothesized that VTA DBS would modulate both the dopaminergic and respiratory effect of oxycodone. Methods: Multiple-cyclic square wave voltammetry (M-CSWV) was used to investigate how deep brain stimulation (130 Hz, 0.2 ms, and 0.2 mA) of the rodent ventral segmental area (VTA), which contains abundant dopaminergic neurons, modulates the acute effects of oxycodone administration (2.5 mg/kg, i.v.) on nucleus accumbens core (NAcc) tonic extracellular dopamine levels and respiratory rate in urethane-anesthetized rats (1.5 g/kg, i.p.). Results: I.V. administration of oxycodone resulted in an increase in NAcc tonic dopamine levels (296.9 ± 37.0 nM) compared to baseline (150.7 ± 15.5 nM) and saline administration (152.0 ± 16.1 nM) (296.9 ± 37.0 vs. 150.7 ± 15.5 vs. 152.0 ± 16.1, respectively, p = 0.022, n = 5). This robust oxycodone-induced increase in NAcc dopamine concentration was associated with a sharp reduction in respiratory rate (111.7 ± 2.6 min-1 vs. 67.9 ± 8.3 min-1; pre- vs. post-oxycodone; p < 0.001). Continuous DBS targeted at the VTA (n = 5) reduced baseline dopamine levels, attenuated the oxycodone-induced increase in dopamine levels to (+39.0% vs. +95%), and respiratory depression (121.5 ± 6.7 min-1 vs. 105.2 ± 4.1 min-1; pre- vs. post-oxycodone; p = 0.072). Discussion: Here we demonstrated VTA DBS alleviates oxycodone-induced increases in NAcc dopamine levels and reverses respiratory suppression. These results support the possibility of using neuromodulation technology for treatment of drug addiction.

6.
Front Neurosci ; 17: 1061578, 2023.
Article in English | MEDLINE | ID: mdl-36793536

ABSTRACT

Cocaine's addictive properties stem from its capacity to increase tonic extracellular dopamine levels in the nucleus accumbens (NAc). The ventral tegmental area (VTA) is a principal source of NAc dopamine. To investigate how high frequency stimulation (HFS) of the rodent VTA or nucleus accumbens core (NAcc) modulates the acute effects of cocaine administration on NAcc tonic dopamine levels multiple-cyclic square wave voltammetry (M-CSWV) was used. VTA HFS alone decreased NAcc tonic dopamine levels by 42%. NAcc HFS alone resulted in an initial decrease in tonic dopamine levels followed by a return to baseline. VTA or NAcc HFS following cocaine administration prevented the cocaine-induced increase in NAcc tonic dopamine. The present results suggest a possible underlying mechanism of NAc deep brain stimulation (DBS) in the treatment of substance use disorders (SUDs) and the possibility of treating SUD by abolishing dopamine release elicited by cocaine and other drugs of abuse by DBS in VTA, although further studies with chronic addiction models are required to confirm that. Furthermore, we demonstrated the use of M-CSWV can reliably measure tonic dopamine levels in vivo with both drug administration and DBS with minimal artifacts.

8.
Mol Psychiatry ; 28(3): 1020-1026, 2023 03.
Article in English | MEDLINE | ID: mdl-36513812

ABSTRACT

Preclinical evidence suggests that antidepressants (ADs) may differentially influence mitochondrial energetics. This study was conducted to investigate the relationship between mitochondrial function and illness vulnerability in bipolar disorder (BD), specifically risk of treatment-emergent mania (TEM). Participants with BD already clinically phenotyped as TEM+ (n = 176) or TEM- (n = 516) were further classified whether the TEM associated AD, based on preclinical studies, increased (Mito+, n = 600) or decreased (Mito-, n = 289) mitochondrial electron transport chain (ETC) activity. Comparison of TEM+ rates between Mito+ and Mito- ADs was performed using generalized estimating equations to account for participants exposed to multiple ADs while adjusting for sex, age at time of enrollment into the biobank and BD type (BD-I/schizoaffective vs. BD-II). A total of 692 subjects (62.7% female, 91.4% White, mean age 43.0 ± 14.0 years) including 176 cases (25.3%) of TEM+ and 516 cases (74.7%) of TEM- with previous exposure to Mito+ and/or Mito- antidepressants were identified. Adjusting for age, sex and BD subtype, TEM+ was more frequent with antidepressants that increased (24.7%), versus decreased (13.5%) mitochondrial energetics (OR = 2.21; p = 0.000009). Our preliminary retrospective data suggests there may be merit in reconceptualizing AD classification, not solely based on monoaminergic conventional drug mechanism of action, but additionally based on mitochondrial energetics. Future prospective clinical studies on specific antidepressants and mitochondrial activity are encouraged. Recognizing pharmacogenomic investigation of drug response may extend or overlap to genomics of disease risk, future studies should investigate potential interactions between mitochondrial mechanisms of disease risk and drug response.


Subject(s)
Bipolar Disorder , Mania , Humans , Female , Adult , Middle Aged , Male , Retrospective Studies , Antidepressive Agents/therapeutic use , Mitochondria
9.
Sci Rep ; 12(1): 12627, 2022 07 24.
Article in English | MEDLINE | ID: mdl-35871638

ABSTRACT

Emerging evidence suggests that interleukin (IL)-8 has a protective role in the context of depression. Higher levels of IL-8 are associated with lower depressive symptom severity among depressed patients, and treatment-related increases in IL-8 correlate with a positive response in depressed patients. This study (a secondary analysis of a completed randomized controlled trial) aimed to examine whether higher levels of IL-8 mitigate increases in depressed mood in response to an experimental model of inflammation induced depression. Given epidemiologic relationships identified between IL-6, tumor necrosis factor (TNF)- α, and subsequent depression, levels of these pro-inflammatory cytokines were also explored as potential moderators of depressed mood response to endotoxin. Secondary analyses were completed on data from healthy adults (n = 114) who completed a double-blind, placebo-controlled randomized trial in which participants were randomly assigned to receive either a single infusion of low-dose endotoxin (derived from Escherichia coli; 0.8 ng/kg of body weight) or placebo (same volume of 0.9% saline). IL-8, as well as IL-6 and TNF- α, were measured at baseline prior to infusion, and depressed mood and feelings of social disconnection were assessed approximately hourly. Baseline levels of IL-8, but not IL-6 or TNF-α, moderated depressed mood (ß = - 0.274, p = .03) and feelings of social disconnection (ß = - 0.307, p = .01) responses, such that higher baseline IL-8 was associated with less increase in depressed mood and feelings of social disconnection in the endotoxin, but not placebo, condition. IL-8 had threshold effects, in which highest quartile IL-8 (≥ 2.7 pg/mL) attenuated increases in depressed mood in response to endotoxin as compared to lower IL-8 quartiles (p = .02). These findings suggest that IL-8 may be a biological factor that mitigates risk of inflammation-associated depression. Clinical trials registration: ClinicalTrials.gov NCT01671150, registration date 23/08/2012.


Subject(s)
Cytokines , Interleukin-8 , Adult , Double-Blind Method , Endotoxins/pharmacology , Humans , Inflammation/complications , Tumor Necrosis Factor-alpha
10.
Neurotherapeutics ; 19(4): 1193-1215, 2022 07.
Article in English | MEDLINE | ID: mdl-35411483

ABSTRACT

In the face of a global epidemic of drug addiction, neglecting to develop new effective therapies will perpetuate the staggering human and economic costs of substance use. This review aims to summarize and evaluate the preclinical and clinical studies of deep brain stimulation (DBS) as a novel therapy for refractory addiction, in hopes to engage and inform future research in this promising novel treatment avenue. An electronic database search (MEDLINE, EMBASE, Cochrane library) was performed using keywords and predefined inclusion criteria between 1974 and 6/18/2021 (registered on Open Science Registry). Selected articles were reviewed in full text and key details were summarized and analyzed to understand DBS' therapeutic potential and possible mechanisms of action. The search yielded 25 animal and 22 human studies. Animal studies showed that DBS of targets such as nucleus accumbens (NAc), insula, and subthalamic nucleus reduces drug use and seeking. All human studies were case series/reports (level 4/5 evidence), mostly targeting the NAc with generally positive outcomes. From the limited evidence in the literature, DBS, particularly of the NAc, appears to be a reasonable last resort option for refractory addictive disorders. We propose that future research in objective electrophysiological (e.g., local field potentials) and neurochemical (e.g., extracellular dopamine levels) biomarkers would assist monitoring the progress of treatment and developing a closed-loop DBS system. Preclinical literature also highlighted the prefrontal cortex as a promising DBS target, which should be explored in human research.


Subject(s)
Deep Brain Stimulation , Substance-Related Disorders , Animals , Humans , Dopamine , Nucleus Accumbens/physiology , Substance-Related Disorders/therapy , Prefrontal Cortex
11.
Neurosci Biobehav Rev ; 135: 104579, 2022 04.
Article in English | MEDLINE | ID: mdl-35167845

ABSTRACT

Susceptibility to psychiatric disorders seems to be influenced by environmental disturbances throughout all stages of life. Epigenetics is described as a key "bridge" between gene and environment, shaping gene expression and phenotype in response to environmental influences. For a long time, it was believed the epigenetic information could not be transmitted from one generation to the next, however, recent evidence has demonstrated that these acquired changes can be transmitted across generations in different species, with implications also for humans. The emerging evidence of epigenetic inheritance mechanisms is changing the concept of how and what information can be transferred across generations, rising as a promising theory to explain how psychiatric-related information can be inherited. In this review, we will discuss the main theory about epigenetic inheritance, present clinical evidence of its potential role in major psychiatric disorders, and how studies with patients and animal models have helped describe the epigenetic mechanisms and possible targets underlying this process in schizophrenia, bipolar disorder, depression, post-traumatic stress disorder, anxiety, substance use disorder and autism.


Subject(s)
Inheritance Patterns , Mental Disorders , Animals , DNA Methylation , Epigenesis, Genetic/genetics , Epigenomics , Humans , Mental Disorders/genetics , Phenotype
12.
J Neurophysiol ; 127(3): 714-724, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34986049

ABSTRACT

Although dopamine is the most implicated neurotransmitter in the mediation of the pathophysiology of addiction, animal studies show serotonin also plays a vital role. Cocaine is one of the most common illicit drugs globally, but the role of serotonin in its mechanism of action is insufficiently characterized. Consequently, we investigated the acute effects of the psychomotor stimulant cocaine on electrical stimulation-evoked serotonin (phasic) release in the nucleus accumbens core (NAcc) of urethane-anesthetized (1.5 g/kg ip) male Sprague-Dawley rats using N-shaped fast-scan cyclic voltammetry (N-FSCV). A single carbon fiber microelectrode was first implanted in the NAcc. Stimulation was applied to the medial forebrain bundle using 60 Hz, 2 ms, 0.2 mA, 2-s biphasic pulses before and after cocaine (2 mg/kg iv) was administered. Stimulation-evoked serotonin release significantly increased 5 min after cocaine injection compared with baseline (153 ± 21 nM vs. 257 ± 12 nM; P = 0.0042; n = 5) but was unaffected by saline injection (1 mL/kg iv; n = 5). N-FSCV's selective measurement of serotonin release in vivo was confirmed pharmacologically via administration of the selective serotonin reuptake inhibitor escitalopram (10 mg/kg ip) that effectively increased the signal in a separate group of rats (n = 5). Selectivity to serotonin was further confirmed in vitro in which dopamine was minimally detected by N-FSCV with a serotonin to dopamine response ratio of 1:0.04 (200 nM of serotonin:1 µM dopamine ratio; P = 0.0048; n = 5 electrodes). This study demonstrates a noteworthy influence of cocaine on serotonin dynamics, and confirms that N-FSCV can effectively and selectively measure phasic serotonin release in the NAcc.NEW & NOTEWORTHY Serotonin plays a vital role in drug addiction. Here, using N-shaped fast-scan cyclic voltammetry, we demonstrated the effect of cocaine on the phasic release of serotonin at the nucleus accumbens core. To the best of our knowledge, this has not previously been elucidated. Our results not only reinforce the role of serotonin in the mechanism of action of cocaine but also help to fill a gap in our knowledge and provide a baseline for future studies in cocaine addiction.


Subject(s)
Cocaine , Nucleus Accumbens , Animals , Cocaine/pharmacology , Dopamine/pharmacology , Electric Stimulation , Male , Rats , Rats, Sprague-Dawley , Serotonin/pharmacology
13.
Bipolar Disord ; 24(1): 39-47, 2022 02.
Article in English | MEDLINE | ID: mdl-33864716

ABSTRACT

INTRODUCTION: A key mechanism of lithium is the inhibition of glycogen synthase kinase-3ß (GSK3ß) and activation of mammalian target of rapamycin (mTOR), two contributors to insulin signaling. We explored the relationship between these markers and clinical response to lithium in bipolar disorder (BD). METHODS: Thirty-four subjects with BD who had been taking lithium for ≥2 years and had a maintenance lithium Alda score defined as either high (≥7; n = 20) or low (≤2; n = 14) were included in the study. Baseline protein expression of GSK3ß and mTOR (total and phosphorylated (p)) was obtained from a buffy coat. Peripheral blood mononuclear cells (PBMCs) from a subset of each group (n = 11) were stimulated with insulin (10 µg) and change in protein expression was determined using Western blot. RESULTS: In buffy coat samples, significantly higher levels of pmTOR were present in subjects with an Alda score ≤2 (lithium non-responsive), relative to those with scores ≥7 (lithium-responsive). No differences were observed for pGSK3ß. In contrast, functional PBMC responses to 5 min of insulin stimulation demonstrated robust increases in pGSK3ß (87.05 ± 43.41%) and pmTOR (105.7 ± 66.48%) in the lithium responsive group only. This contrasted observed decreases in pGSK3ß (34.08 ± 16.12%) and pmTOR (37.84 ± 14.39%) 5 mins post-insulin in non-responders. CONCLUSIONS: Dynamic increases in pmTOR and pGSK3ß post-insulin stimulation may reflect an immunometabolic state that facilitates lithium response. Further prospective analyses are needed to replicate and extend these preliminary findings and further investigate the role of insulin signaling in lithium response in BD.


Subject(s)
Bipolar Disorder , Lithium , Bipolar Disorder/drug therapy , Glycogen Synthase Kinase 3 , Glycogen Synthase Kinase 3 beta , Humans , Insulin , Leukocytes, Mononuclear/metabolism , Lithium/pharmacology , Lithium/therapeutic use , TOR Serine-Threonine Kinases/metabolism
14.
Neuroscientist ; 28(5): 485-506, 2022 10.
Article in English | MEDLINE | ID: mdl-33586516

ABSTRACT

Inflammation is a critical factor contributing to the progressive neurodegenerative process observed in Parkinson's disease (PD). Microglia, the immune cells of the central nervous system, are activated early in PD pathogenesis and can both trigger and propagate early disease processes via innate and adaptive immune mechanisms such as upregulated immune cells and antibody-mediated inflammation. Downstream cytokines and gene regulators such as microRNA (miRNA) coordinate later disease course and mediate disease progression. Biomarkers signifying the inflammatory and neurodegenerative processes at play within the central nervous system are of increasing interest to clinical teams. To be effective, such biomarkers must achieve the highest sensitivity and specificity for predicting PD risk, confirming diagnosis, or monitoring disease severity. The aim of this review was to summarize the current preclinical and clinical evidence that suggests that inflammatory processes contribute to the initiation and progression of neurodegenerative processes in PD. In this article, we further summarize the data about main inflammatory biomarkers described in PD to date and their potential for regulation as a novel target for disease-modifying pharmacological strategies.


Subject(s)
Parkinson Disease , Biomarkers , Cytokines , Humans , Inflammation/complications , Microglia , Parkinson Disease/drug therapy , Parkinson Disease/genetics
15.
Transl Psychiatry ; 11(1): 598, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824208

ABSTRACT

Lithium, a mood stabilizer and common adjunctive treatment for refractory depression, shares overlapping mechanisms of action with ketamine and enhances the duration of ketamine's antidepressant actions in rodent models at sub-therapeutic doses. Yet, in a recent clinical trial, lithium co-treatment with ketamine failed to improve antidepressant outcomes in subjects previously shown to respond to ketamine alone. The potential for lithium augmentation to improve antidepressant outcomes in ketamine nonresponders, however, has not been explored. The current study examined the behavioral, molecular and metabolic actions of lithium and ketamine co-treatment in a rodent model of antidepressant resistance. Male Wistar rats were administered adrenocorticotropic hormone (ACTH; 100 µg/day, i.p. over 14 days) and subsequently treated with ketamine (10 mg/kg; 2 days; n = 12), lithium (37 mg/kg; 2 days; n = 12), ketamine + lithium (10 mg/kg + 37 mg/kg; 2 days; n = 12), or vehicle saline (0.9%; n = 12). Rats were subjected to open field (6 min) and forced swim tests (6 min). Peripheral blood and brain prefrontal cortical (PFC) tissue was collected one hour following stress exposure. Western blotting was used to determine the effects of treatment on extracellular signal-regulated kinase (ERK); mammalian target of rapamycin (mTOR), phospho kinase B (Akt), and glycogen synthase kinase-3ß (GSK3ß) protein levels in the infralimbic (IL) and prelimbic (PL) subregions of the PFC. Prefrontal oxygen consumption rate (OCR) and extracellular acidification rates (ECAR) were also determined in anterior PFC tissue at rest and following stimulation with brain-derived neurotrophic factor (BDNF) and tumor necrosis factor α (TNFα). Blood plasma levels of mTOR and insulin were determined using enzyme-linked immunosorbent assays (ELISAs). Overall, rats receiving ketamine+lithium displayed a robust antidepressant response to the combined treatment as demonstrated through significant reductions in immobility time (p < 0.05) and latency to immobility (p < 0.01). These animals also had higher expression of plasma mTOR (p < 0.01) and insulin (p < 0.001). Tissue bioenergetics analyses revealed that combined ketamine+lithium treatment did not significantly alter the respiratory response to BDNF or TNFα. Animals receiving both ketamine and lithium had significantly higher phosphorylation (p)-to-total expression ratios of mTOR (p < 0.001) and Akt (p < 0.01), and lower ERK in the IL compared to control animals. In contrast, pmTOR/mTOR levels were reduced in the PL of ketamine+lithium treated animals, while pERK/ERK expression levels were elevated. Taken together, these data demonstrate that lithium augmentation of ketamine in antidepressant nonresponsive animals improves antidepressant-like behavioral responses under stress, together with peripheral insulin efflux and region-specific PFC insulin signaling.


Subject(s)
Depressive Disorder, Treatment-Resistant , Ketamine , Adaptation, Psychological , Animals , Antidepressive Agents , Brain-Derived Neurotrophic Factor , Depression/drug therapy , Depressive Disorder, Treatment-Resistant/drug therapy , Insulin , Lithium , Male , Rats , Rats, Wistar , Rodentia
16.
Front Hum Neurosci ; 15: 644921, 2021.
Article in English | MEDLINE | ID: mdl-34349629

ABSTRACT

The antidepressant actions of deep brain stimulation (DBS) are associated with progressive neuroadaptations within the mood network, modulated in part, by neurotrophic mechanisms. We investigated the antidepressant-like effects of chronic nucleus accumbens (NAc) DBS and its association with change in glycogen synthase kinase 3 (GSK3) and mammalian target of rapamycin (mTOR) expression in the infralimbic cortex (IL), and the dorsal (dHIP) and ventral (vHIP) subregions of the hippocampus of antidepressant resistant rats. Antidepressant resistance was induced via daily injection of adrenocorticotropic hormone (ACTH; 100 µg/day; 15 days) and confirmed by non-response to tricyclic antidepressant treatment (imipramine, 10 mg/kg). Portable microdevices provided continuous bilateral NAc DBS (130 Hz, 200 µA, 90 µs) for 7 days. A control sham electrode group was included, together with ACTH- and saline-treated control groups. Home cage monitoring, open field, sucrose preference, and, forced swim behavioral tests were performed. Post-mortem levels of GSK3 and mTOR, total and phosphorylated, were determined with Western blot. As previously reported, ACTH treatment blocked the immobility-reducing effects of imipramine in the forced swim test. In contrast, treatment with either active DBS or sham electrode placement in the NAc significantly reduced forced swim immobility time in ACTH-treated animals. This was associated with increased homecage activity in the DBS and sham groups relative to ACTH and saline groups, however, no differences in locomotor activity were observed in the open field test, nor were any group differences seen for sucrose consumption across groups. The antidepressant-like actions of NAc DBS and sham electrode placements were associated with an increase in levels of IL and vHIP phospho-GSK3ß and phospho-mTOR, however, no differences in these protein levels were observed in the dHIP region. These data suggest that early response to electrode placement in the NAc, irrespective of whether active DBS or sham, has antidepressant-like effects in the ACTH-model of antidepressant resistance associated with distal upregulation of phospho-GSK3ß and phospho-mTOR in the IL and vHIP regions of the mood network.

17.
Front Pharmacol ; 12: 705254, 2021.
Article in English | MEDLINE | ID: mdl-34295252

ABSTRACT

For over 40 years, in vivo microdialysis techniques have been at the forefront in measuring the effects of illicit substances on brain tonic extracellular levels of dopamine that underlie many aspects of drug addiction. However, the size of microdialysis probes and sampling rate may limit this technique's ability to provide an accurate assessment of drug effects in microneural environments. A novel electrochemical method known as multiple-cyclic square wave voltammetry (M-CSWV), was recently developed to measure second-to-second changes in tonic dopamine levels at microelectrodes, providing spatiotemporal resolution superior to microdialysis. Here, we utilized M-CSWV and fast-scan cyclic voltammetry (FSCV) to measure changes in tonic or phasic dopamine release in the nucleus accumbens core (NAcc) after acute cocaine administration. Carbon-fiber microelectrodes (CFM) and stimulating electrodes were implanted into the NAcc and medial forebrain bundle (MFB) of urethane anesthetized (1.5 g/kg i.p.) Sprague-Dawley rats, respectively. Using FSCV, depths of each electrode were optimized by determining maximal MFB electrical stimulation-evoked phasic dopamine release. Changes in phasic responses were measured after a single dose of intravenous saline or cocaine hydrochloride (3 mg/kg; n = 4). In a separate group, changes in tonic dopamine levels were measured using M-CSWV after intravenous saline and after cocaine hydrochloride (3 mg/kg; n = 5). Both the phasic and tonic dopamine responses in the NAcc were augmented by the injection of cocaine compared to saline control. The phasic and tonic levels changed by approximately x2.4 and x1.9, respectively. These increases were largely consistent with previous studies using FSCV and microdialysis. However, the minimal disruption/disturbance of neuronal tissue by the CFM may explain why the baseline tonic dopamine values (134 ± 32 nM) measured by M-CSWV were found to be 10-fold higher when compared to conventional microdialysis. In this study, we demonstrated phasic dopamine dynamics in the NAcc with acute cocaine administration. M-CSWV was able to record rapid changes in tonic levels of dopamine, which cannot be achieved with other current voltammetric techniques. Taken together, M-CSWV has the potential to provide an unprecedented level of physiologic insight into dopamine signaling, both in vitro and in vivo, which will significantly enhance our understanding of neurochemical mechanisms underlying psychiatric conditions.

18.
J Psychiatr Res ; 140: 350-356, 2021 08.
Article in English | MEDLINE | ID: mdl-34139457

ABSTRACT

INTRODUCTION: In cross-sectional studies of depressed patients, relationships between depression and levels of IL-8 are inconsistent, and have not been examined in relation to sex. Given identified sex differences in longitudinal data, it is important to evaluate sex-specific cross-sectional relationships between IL-8 and depressive symptoms, which may explain some inconsistency in the extant literature. It is further unknown whether IL-8 levels may relate to specific symptom profiles among depressed patients, with or without regard to sex. METHODS: Among 108 patients with treatment resistant depression (50 females), we evaluated cross-sectional relationships between IL-8 and depression severity, as measured by the Hamilton Depression Rating Scale [HAM-D] Score, and examined sex-specific relationships, as well as relationships with depressive symptom profiles. Other inflammatory markers (IL-6, IL-10, TNF-α, CRP) were also explored in relation to HAM-D. RESULTS: Higher IL-8 was associated with lower total HAM-D score (standardized ß = -0.19, p = 0.049). Sex-specific effects were identified (IL-8 x sex interaction: p = 0.03), in which higher IL-8 related to lower HAM-D score in females (standardized ß = -0.41, p = 0.004, effect size (sr2) = 0.17), but not males (standardized ß = 0.02, p = 0.91). Among a subset of 94 patients (41 females) who had individual HAM-D items available, we evaluated relationships between IL-8 and HAM-D factor subscores. Across sexes, higher IL-8 was associated with lower anxiety/hypochondriasis subscores (standardized ß = -0.31, p = 0.002; sex interaction: p = 0.99). Sex differences were identified for relationships between IL-8 and two other HAM-D factor subscores. CONCLUSIONS: IL-8 may be related to anxiety symptoms across sexes, but may have a sex-specific relationship with other depressive symptoms. Further evaluation of sex-specific relationships between IL-8, depression symptom profiles, treatment response, and potential neurobiological correlates, may inform mechanisms of depression pathophysiology and aid in development of precision medicine strategies.


Subject(s)
Depressive Disorder, Treatment-Resistant , Interleukin-8 , Anxiety Disorders , Cross-Sectional Studies , Depression , Female , Humans , Male
19.
J Psychopharmacol ; 35(2): 168-177, 2021 02.
Article in English | MEDLINE | ID: mdl-32643995

ABSTRACT

BACKGROUND: Current theory suggests that treatment-resistant depression (TRD) involves impaired neuroplasticity resulting in cognitive and neural rigidity, and that clinical improvement may require increasing brain flexibility and adaptability. AIMS: In this hypothesis-generating study, we sought to identify preliminary evidence of brain flexibility correlates of clinical change within the context of an open-label ketamine trial in adolescents with TRD, focusing on two promising candidate markers of neural flexibility: (a) entropy of resting-state functional magnetic resonance imaging (fMRI) signals; and (b) insulin-stimulated phosphorylation of mammalian target of rapamycin (mTOR) and glycogen synthase-3-beta (GSK3ß) in peripheral blood mononuclear cells. METHODS: We collected resting-state functional magnetic resonance imaging data and blood samples from 13 adolescents with TRD before and after a series of six ketamine infusions over 2 weeks. Usable pre/post ketamine data were available from 11 adolescents for imaging and from 10 adolescents for molecular signaling. We examined correlations between treatment response and changes in the central and peripheral flexibility markers. RESULTS: Depression reduction correlated with increased nucleus accumbens entropy. Follow-up analyses suggested that physiological changes were associated with treatment response. In contrast to treatment non-responders (n=6), responders (n=5) showed greater increase in nucleus accumbens entropy after ketamine, together with greater post-treatment insulin/mTOR/GSK3ß signaling. CONCLUSIONS: These data provide preliminary evidence that changes in neural flexibility may underlie symptom relief in adolescents with TRD following ketamine. Future research with adequately powered samples is needed to confirm resting-state entropy and insulin-stimulated mTOR and GSK3ß as brain flexibility markers and candidate targets for future clinical trials. CLINICAL TRIAL NAME: Ketamine in adolescents with treatment-resistant depressionURL: https://clinicaltrials.gov/ct2/show/NCT02078817Registration number: NCT02078817.


Subject(s)
Antidepressive Agents/therapeutic use , Biomarkers/metabolism , Brain/metabolism , Depressive Disorder, Treatment-Resistant/drug therapy , Depressive Disorder, Treatment-Resistant/metabolism , Ketamine/therapeutic use , Nerve Growth Factors/metabolism , Adolescent , Entropy , Excitatory Amino Acid Antagonists/therapeutic use , Female , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Magnetic Resonance Imaging/methods , Male , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism
20.
Eur J Neurosci ; 53(2): 649-662, 2021 01.
Article in English | MEDLINE | ID: mdl-32735698

ABSTRACT

It is known that bipolar disorder has a multifactorial aetiology where the interaction between genetic and environmental factors is responsible for its development. Because of this, epigenetics has been largely studied in psychiatric disorders. The present study aims to evaluate the effects of histone deacetylase inhibitors on epigenetic enzyme alterations in rats or mice submitted to animal models of mania induced by dextro-amphetamine or sleep deprivation, respectively. Adult male Wistar rats were subjected to 14 days of dextro-amphetamine administration, and from the eighth to the fourteenth day, the animals were treated with valproate and sodium butyrate in addition to dextro-amphetamine injections. Adult C57BL/6 mice received 7 days of valproate or sodium butyrate administration, being sleep deprived at the last 36 hr of the protocol. Locomotor and exploratory activities of rats and mice were evaluated in the open-field test, and histone deacetylase, DNA methyltransferase, and histone acetyltransferase activities were assessed in the frontal cortex, hippocampus, and striatum. Dextro-amphetamine and sleep deprivation induced hyperactivity and increased histone deacetylase and DNA methyltransferase activities in the animal's brain. Valproate and sodium butyrate were able to reverse hyperlocomotion induced by both animal models, as well as the alterations on histone deacetylase and DNA methyltransferase activities. There was a positive correlation between enzyme activities and number of crossings for both models. Histone deacetylase and DNA methyltransferase activities also presented a positive correlation between theirselves. These results suggest that epigenetics can play an important role in BD pathophysiology as well as in its treatment.


Subject(s)
Antimanic Agents , Sleep Deprivation , Amphetamine , Animals , Antimanic Agents/pharmacology , Antimanic Agents/therapeutic use , Disease Models, Animal , Epigenesis, Genetic , Male , Mania , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar , Sleep, REM
SELECTION OF CITATIONS
SEARCH DETAIL
...