Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 47(19): 4869-4872, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36181137

ABSTRACT

A dual-output thin-disk picosecond laser operating at 100 W with 1 kHz repetition rate is reported in this Letter. By electronically adjusting the amplitude of the optical seed pulses that are injected into the laser cavity, the energy extracted from the gain medium can be shared between two pulses. Amplified double pulses are subsequently spatially separated into two independent beams by a fast Pockels cell, compressed in one common compressor, and frequency-doubled with ∼70% efficiency. This approach significantly decreases strain on the optics, as well as nonlinear effects, and is advantageous for power scaling.

2.
Opt Lett ; 46(22): 5655-5658, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34780429

ABSTRACT

We report on a 1 kHz, 515 nm laser system, based on a commercially available 230 W average power Yb:YAG thin-disk regenerative amplifier, developed for pumping one of the last optical parametric chirped pulse amplification (OPCPA) stages of the Allegra laser system at ELI Beamlines. To avoid problems with self-focusing of picosecond pulses, the 1030 nm output pulses are compressed and frequency doubled with an LBO crystal in vacuum. Additionally, development of a thermal management system was needed to ensure stable phase matching conditions at high average power. The resulting 515 nm pulses have an energy of more than 120 mJ with SHG efficiency of 60% and an average RMS stability of 1.1% for more than 8 h.

3.
Sci Rep ; 7(1): 8414, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827741

ABSTRACT

Neurons communicate by brief bursts of spikes separated by silent phases and information may be encoded into the burst duration or through the structure of the interspike intervals. Inspired by the importance of bursting activities in neuronal computation, we have investigated the bursting oscillations of an optically injected quantum dot laser. We find experimentally that the laser periodically switches between two distinct operating states with distinct optical frequencies exhibiting either fast oscillatory or nearly steady state evolutions (two-color bursting oscillations). The conditions for their emergence and their control are analyzed by systematic simulations of the laser rate equations. By projecting the bursting solution onto the bifurcation diagram of a fast subsystem, we show how a specific hysteresis phenomenon explains the transitions between active and silent phases. Since size-controlled bursts can contain more information content than single spikes our results open the way to new forms of neuron inspired optical communication.

4.
Rev Sci Instrum ; 88(1): 013109, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28147631

ABSTRACT

We report on the design and performance of a fiber-based, multi-channel laser amplifier seed pulse distribution system. The device is designed to condition and distribute low energy laser pulses from a mode-locked oscillator to multiple, highly synchronized, high energy amplifiers integrated into a laser beamline. Critical functions such as temporal pulse stretching well beyond 100 ps/nm, pulse picking, and fine control over the pulse delay up to 300 ps are all performed in fiber eliminating the need for bulky and expensive grating stretchers, Pockels cells, and delay lines. These functions are characterized and the system as a whole is demonstrated by seeding two high energy amplifiers in the laser beamline. The design of this system allows for complete computer control of all functions, including tuning of dispersion, and is entirely hands-free. The performance of this device and its subsystems will be relevant to those developing lasers where reliability, size, and cost are key concerns in addition to performance; this includes those developing large-scale laser systems similar to ours and also those developing table-top experiments and commercial systems.

5.
Opt Lett ; 39(15): 4607-10, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25078240

ABSTRACT

An all-optical switching mechanism via optical injection of an InAs/GaAs quantum dot laser is presented. Relative state suppression in excess of 40 dB is achieved, and experimental switching times of the order of a few hundred picoseconds are demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...