Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 87(6): 4241-4253, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35230109

ABSTRACT

Bicyclic triazolium scaffolds are widely employed in N-heterocyclic carbene (NHC) organocatalysis. While the incorporation of a fused ring was initially for synthetic utility in accessing chiral, modular triazolyl scaffolds, recent results highlight the potential for impact upon reaction outcome with the underpinning origins unclear. The common first step to all triazolium-catalyzed transformations is C(3)-H deprotonation to form the triazolylidene NHC. Herein, we report an analysis of the impact of size of the fused (5-, 6-, and 7-membered, n = 1, 2, and 3, respectively) ring on the C(3) proton transfer reactions of a series of bicyclic triazolium salts. Rate constants for the deuteroxide-catalyzed C(3)-H/D-exchange of triazolium salts, kDO, were significantly influenced by the size of the adjacent fused ring, with the kinetic acidity trend, or protofugalities, following the order kDO (n = 1) > kDO (n = 2) ≈ kDO (n = 3). Detailed analyses of X-ray diffraction (XRD) data for 20 triazolium salts (including 16 new structures) and of computational data for the corresponding triazolylidene NHCs provide insight on structural effects of alteration of fused ring size. In particular, changes in internal triazolyl NCN angle and positioning of the most proximal CH2 with variation in fused ring size are proposed to influence the experimental protofugality order.

2.
Chem ; 6(7): 1755-1765, 2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32685768

ABSTRACT

Single-crystal X-ray diffraction analysis (SCXRD) constitutes a universal approach for the elucidation of molecular structure and the study of crystalline forms. However, the discovery of viable crystallization conditions remains both experimentally challenging and resource intensive in both time and the quantity of analyte(s). We report a robot-assisted, high-throughput method for the crystallization of organic-soluble small molecules in which we employ only micrograms of analyte per experiment. This allows hundreds of crystallization conditions to be screened in parallel with minimal overall sample requirements. Crystals suitable for SCXRD are grown from nanoliter droplets of a solution of analyte in organic solvent(s), each of which is encapsulated within an inert oil to control the rate of solvent loss. This encapsulated nanodroplet crystallization methodology can also be used to search for new crystal forms, as exemplified through both our discovery of a new (13th) polymorph of the olanzapine precursor ROY and SCXRD analysis of the "uncrystallizable" agrochemical dithianon.

3.
J Nat Prod ; 80(5): 1558-1562, 2017 05 26.
Article in English | MEDLINE | ID: mdl-28398740

ABSTRACT

The madurastatins are pentapeptide siderophores originally described as containing an unusual salicylate-capped N-terminal aziridine ring. Isolation of madurastatin C1 (1) (also designated MBJ-0034), from Actinomadura sp. DEM31376 (itself isolated from a deep sea sediment), prompted structural reevaluation of the madurastatin siderophores, in line with the recent work of Thorson and Shaaban. NMR spectroscopy in combination with partial synthesis allowed confirmation of the structure of madurastatin C1 (1) as containing an N-terminal 2-(2-hydroxyphenyl)oxazoline in place of the originally postulated aziridine, while absolute stereochemistry was determined via Harada's advanced Marfey's method. Therefore, this work further supports Thorson and Shaaban's proposed structural revision of the madurastatin class of siderophores (madurastatins A1 (2), B1 (3), C1 (1), and MBJ-0036 (4)) as N-terminal 2-(2-hydroxyphenyl)oxazolines.


Subject(s)
Aziridines/chemistry , Oligopeptides/chemistry , Peptides/chemistry , Piperidones/chemistry , Siderophores/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Stereoisomerism
4.
Eur J Med Chem ; 64: 222-7, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23644205

ABSTRACT

The synthesis of a variety of N-alkylated 2,3,3-trimethylindolenines and 2-methylbenzothiazoles is reported herein. Their potential as antifungal agents is evaluated by preliminary screening against Saccharomyces cerevisiae (S. cerevisiae), Schizosaccharomyces pombe (S. pombe), and Candida albicans (C. albicans). Statistical analyses illustrate a strong relationship between chain length and growth inhibition for S. cerevisiae and S. pombe (p < 0.0001 in every case). Of particular interest is the activity of both sets of compounds against S. cerevisiae, as this is emerging as an opportunistic pathogen, especially in immunosuppressed and immunocompromised patients. Bioassays were set up to compare the efficacy of our range of N-alkylated compounds against classic antifungal agents; Amphotericin B and Thiabendazole.


Subject(s)
Antifungal Agents/pharmacology , Benzothiazoles/pharmacology , Candida albicans/drug effects , Indoles/pharmacology , Saccharomyces cerevisiae/drug effects , Schizosaccharomyces/drug effects , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Candida albicans/growth & development , Dose-Response Relationship, Drug , Indoles/chemical synthesis , Indoles/chemistry , Microbial Sensitivity Tests , Molecular Structure , Saccharomyces cerevisiae/growth & development , Schizosaccharomyces/growth & development , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...