Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 333: 121979, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494232

ABSTRACT

Heparan sulfate (HS) is a glycosaminoglycan (GAG) found throughout nature and is involved in a wide range of functions including modulation of cell signalling via sequestration of growth factors. Current consensus is that the specificity of HS motifs for protein binding are individual for each protein. Given the structural complexity of HS the synthesis of libraries of these compounds to probe this is not trivial. Herein we present the synthesis of an HS decamer, the design of which was undertaken rationally from previously published data for HS binding to the growth factor BMP-2. The biological activity of this HS decamer was assessed in vitro, showing that it had the ability to both bind BMP-2 and increase its thermal stability as well as enhancing the bioactivity of BMP-2 in vitro in C2C12 cells. At the same time no undesired anticoagulant effect was observed. This decamer was then analysed in vivo in a rabbit model where higher bone formation, bone mineral density (BMD) and trabecular thickness were observed over an empty defect or collagen implant alone. This indicated that the HS decamer was effective in promoting bone regeneration in vivo.


Subject(s)
Glycosaminoglycans , Heparitin Sulfate , Animals , Rabbits , Heparitin Sulfate/chemistry , Osteogenesis , Protein Binding , Bone Regeneration , Intercellular Signaling Peptides and Proteins/metabolism
2.
ACS Infect Dis ; 10(3): 928-937, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38334357

ABSTRACT

Clostridioides difficile causes life-threatening diarrhea and is one of the leading causes of nosocomial infections. During infection, C. difficile releases two gut-damaging toxins, TcdA and TcdB, which are the primary determinants of disease pathogenesis and are important therapeutic targets. Once in the cytosol of mammalian cells, TcdA and TcdB use UDP-glucose to glucosylate host Rho GTPases, which leads to cytoskeletal changes that result in a loss of intestinal integrity. Isofagomine inhibits TcdA and TcdB as a mimic of the glucocation transition state of the glucosyltransferase reaction. However, sequence variants of TcdA and TcdB across the clades of infective C. difficile continue to be identified, and therefore, evaluation of isofagomine inhibition against multiple toxin variants is required. Here, we show that isofagomine inhibits the glucosyltransferase domain of multiple TcdB variants and protects TcdB-induced cell rounding of the most common full-length toxin variants. Furthermore, we demonstrate that isofagomine protects against C. difficile-induced mortality in two murine models of C. difficile infection. Isofagomine treatment of mouse C. difficile infection also permitted the recovery of the gastrointestinal microbiota, an important barrier to preventing recurring C. difficile infection. The broad specificity of isofagomine supports its potential as a prophylactic to protect against C. difficile-induced morbidity and mortality.


Subject(s)
Bacterial Toxins , Boron Compounds , Clostridioides difficile , Imino Pyranoses , Animals , Mice , Bacterial Toxins/genetics , Enterotoxins , Clostridioides difficile/genetics , Bacterial Proteins/genetics , Glucosyltransferases/genetics , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL