Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Dis Model Mech ; 14(10)2021 10 01.
Article in English | MEDLINE | ID: mdl-34473252

ABSTRACT

Spinocerebellar ataxia 3 (SCA3, also known as Machado-Joseph disease) is a neurodegenerative disease caused by inheritance of a CAG repeat expansion within the ATXN3 gene, resulting in polyglutamine (polyQ) repeat expansion within the ataxin-3 protein. In this study, we have identified protein aggregates in both neuronal-like (SHSY5Y) cells and transgenic zebrafish expressing human ataxin-3 with expanded polyQ. We have adapted a previously reported flow cytometry methodology named flow cytometric analysis of inclusions and trafficking, allowing rapid quantification of detergent insoluble forms of ataxin-3 fused to a GFP in SHSY5Y cells and cells dissociated from the zebrafish larvae. Flow cytometric analysis revealed an increased number of detergent-insoluble ataxin-3 particles per nuclei in cells and in zebrafish expressing polyQ-expanded ataxin-3 compared to those expressing wild-type human ataxin-3. Treatment with compounds known to modulate autophagic activity altered the number of detergent-insoluble ataxin-3 particles in cells and zebrafish expressing mutant human ataxin-3. We conclude that flow cytometry can be harnessed to rapidly count ataxin-3 aggregates, both in vitro and in vivo, and can be used to compare potential therapies targeting protein aggregates. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Flow Cytometry , Machado-Joseph Disease/pathology , Protein Aggregates , Zebrafish/physiology , Animals , Animals, Genetically Modified , Ataxin-3/metabolism , Autophagy/drug effects , Cell Line, Tumor , Cell Nucleus/metabolism , Disease Models, Animal , Green Fluorescent Proteins/metabolism , Humans , Neurons/metabolism , Peptides , Solubility
2.
Mol Brain ; 14(1): 128, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34416891

ABSTRACT

Machado-Joseph disease (MJD, also known as spinocerebellar ataxia type 3) is a fatal neurodegenerative disease that impairs control and coordination of movement. Here we tested whether treatment with the histone deacetylase inhibitor sodium valproate (valproate) prevented a movement phenotype that develops in larvae of a transgenic zebrafish model of the disease. We found that treatment with valproate improved the swimming of the MJD zebrafish, affected levels of acetylated histones 3 and 4, but also increased expression of polyglutamine expanded human ataxin-3. Proteomic analysis of protein lysates generated from the treated and untreated MJD zebrafish also predicted that valproate treatment had activated the sirtuin longevity signaling pathway and this was confirmed by findings of increased SIRT1 protein levels and sirtuin activity in valproate treated MJD zebrafish and HEK293 cells expressing ataxin-3 84Q, respectively. Treatment with resveratrol (another compound known to activate the sirtuin pathway), also improved swimming in the MJD zebrafish. Co-treatment with valproate alongside EX527, a SIRT1 activity inhibitor, prevented induction of autophagy by valproate and the beneficial effects of valproate on the movement in the MJD zebrafish, supporting that they were both dependent on sirtuin activity. These findings provide the first evidence of sodium valproate inducing activation of the sirtuin pathway. Further, they indicate that drugs that target the sirtuin pathway, including sodium valproate and resveratrol, warrant further investigation for the treatment of MJD and related neurodegenerative diseases.


Subject(s)
Histone Deacetylase Inhibitors/therapeutic use , Machado-Joseph Disease/drug therapy , Sirtuins/drug effects , Valproic Acid/therapeutic use , Acetylation , Animals , Animals, Genetically Modified , Ataxin-3/antagonists & inhibitors , Ataxin-3/genetics , Ataxin-3/metabolism , Autophagy/drug effects , Carbazoles/pharmacology , Carbazoles/therapeutic use , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Synergism , Genes, Reporter , HEK293 Cells , Histone Deacetylase Inhibitors/pharmacology , Histones/metabolism , Humans , Peptides/genetics , Protein Processing, Post-Translational , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use , Signal Transduction , Sirtuin 1/physiology , Sirtuins/physiology , Swimming , Trinucleotide Repeat Expansion , Valproic Acid/pharmacology , Zebrafish , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
3.
Zebrafish ; 16(1): 8-14, 2019 02.
Article in English | MEDLINE | ID: mdl-30300572

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons. ALS can be modeled in zebrafish (Danio rerio) through the expression of human ALS-causing genes, such as superoxide dismutase 1 (SOD1). Overexpression of mutated human SOD1 protein causes aberrant branching and shortening of spinal motor axons. Despite this, the functional relevance of this axon morphology remains elusive. Our aim was to determine whether this motor axonopathy is correlated with impaired movement in mutant (MT) SOD1-expressing zebrafish. Transgenic zebrafish embryos that express blue fluorescent protein (mTagBFP) in motor neurons were injected with either wild-type (WT) or MT (A4V) human SOD1 messenger ribonucleic acid (mRNA). At 48 hours post-fertilization, larvae movement (distance traveled during behavioral testing) was examined, followed by quantification of motor axon length. Larvae injected with MT SOD1 mRNA had significantly shorter and more aberrantly branched motor axons (p < 0.002) and traveled a significantly shorter distance during behavioral testing (p < 0.001) when compared with WT SOD1 and noninjected larvae. Furthermore, there was a positive correlation between distance traveled and motor axon length (R2 = 0.357, p < 0.001). These data represent the first correlative investigation of motor axonopathies and impaired movement in SOD1-expressing zebrafish, confirming functional relevance and validating movement as a disease phenotype for the testing of disease treatments for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Motor Neurons/physiology , Movement , Mutation , Superoxide Dismutase-1/genetics , Zebrafish/physiology , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/physiology , Disease Models, Animal , Superoxide Dismutase-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL