Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Commun (Camb) ; 59(41): 6243-6246, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37132471

ABSTRACT

The lacunary monocharged anion [{Mo6Cli8}Cla5□a]- presents concomitantly a strongly electrophilic site and a nucleophilic one. This Janus character in terms of reactivity is confirmed by its gas phase reaction with [Br6Cs4K]- to form [{Mo6Cli8}Cla5Bra]2- and by its unusual self-reactivity leading to [{Mo6Cli8}Cla6]2- dianions.

2.
J Chem Phys ; 142(10): 101924, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25770513

ABSTRACT

Dispersion corrected Density Functional Theory calculations were employed to study the adsorption of benzenes derivatized with functional groups encompassing a large region of the activated/deactivated spectrum to the Ag(111) surface. Benzenes substituted with weak activating or deactivating groups, such as methyl and fluoro, do not have a strong preference for adsorbing to a particular site on the substrate, with the corrugations in the potential energy surface being similar to those of benzene. Strong activating (N(CH3)2) and deactivating (NO2) groups, on the other hand, possess a distinct site preference. The nitrogen in the former prefers to lie above a silver atom (top site), but in the latter a hollow hexagonal-closed-packed (Hhcp) site of the Ag(111) surface is favored instead. Benzenes derivatized with classic activating groups donate electron density from their highest occupied molecular orbital to the surface, and those functionalized with deactivating groups withdraw electron density from the surface into orbitals that are unoccupied in the gas phase. For benzenes functionalized with two substituents, the groups that are strongly activating or deactivating control the site preference and the other groups assume sites that are, to a large degree, dictated by their positions on the benzene ring. The relative stabilities of the ortho, meta, and para positional isomers of disubstituted benzenes can, in some cases, be modified by adsorption to the surface.

3.
Angew Chem Int Ed Engl ; 53(25): 6383-7, 2014 Jun 16.
Article in English | MEDLINE | ID: mdl-24798697

ABSTRACT

Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein reported is a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols which terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, thus yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition-state calculations support a cis-oxycupration stereochemistry-determining step.


Subject(s)
Alkenes/chemistry , Copper/chemistry , Ethers/chemistry , Catalysis , Crystallography, X-Ray , Cyclization , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL