Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38279329

ABSTRACT

Interest in the coronavirus disease 2019 (COVID-19) has progressively decreased lately, mainly due to the great effectivity of vaccines. Furthermore, no new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants able to circumvent the protection of these vaccines, while presenting high transmissibility and/or lethality, have appeared. However, long COVID has emerged as a huge threat to human health and economy globally. The human microbiota plays an important role in health and disease, participating in the modulation of innate and adaptive immune responses. Thus, multiple studies have found that the nasopharyngeal microbiota is altered in COVID-19 patients, with these changes associated with the onset and/or severity of the disease. Nevertheless, although dysbiosis has also been reported in long COVID patients, mainly in the gut, little is known about the possible involvement of the microbiota in the development of this disease. Therefore, in this work, we aim to fill this gap in the knowledge by discussing and comparing the most relevant studies that have been published in this field up to this point. Hence, we discuss that the relevance of long COVID has probably been underestimated, and that the available data suggest that the microbiota could be playing a pivotal role on the pathogenesis of the disease. Further research to elucidate the involvement of the microbiota in long COVID will be essential to explore new therapeutic strategies based on manipulation of the microbiota.


Subject(s)
COVID-19 , Microbiota , Vaccines , Humans , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Dysbiosis
2.
Front Immunol ; 14: 1294766, 2023.
Article in English | MEDLINE | ID: mdl-38077314

ABSTRACT

Type I interferonopathies are a heterogenic group of rare diseases associated with an increase in type I interferon (IFN). The main challenge for the study of Type I interferonopathies is the lack of a well-founded animal model to better characterize the phenotype as well as to perform fast and large drug screenings to offer the best treatment options. In this study, we report the development of a transgenic zebrafish model of Type I interferonopathy overexpressing ifih1 carrying the mutation p.Arg742His (Tg(ifih1_mut)), corresponding to the human mutation p.Arg779His. RNA sequence analysis from Tg(ifih1_mut) larvae revealed a systemic inflammation and IFN signature upon a suboptimal poly I:C induction compared with wild-type larvae, confirming the phenotype observed in patients suffering from Type I interferonopathies. More interestingly, the phenotype was manifested in the zebrafish inflammation and Type I IFN reporters nfkb:eGFP and isg15:eGFP, respectively, making this zebrafish model suitable for future high-throughput chemical screening (HTS). Using the unique advantages of the zebrafish model for gene editing, we have generated Tg(ifih1_mut) knocked down for mavs and ikbke, which completely abrogated the Poly I:C induction and activation of the GFP of the reporters. Finally, we used an FDA-approved drug, Baricitinib (Jak1/Jak2 inhibitor), which was able to reduce the inflammation and the ISG expression. Our results demonstrate the potential of this model to further understand AGS pathological mechanisms and to identify novel therapeutic drugs by HTS.


Subject(s)
Interferon Type I , Zebrafish , Animals , Humans , Inflammation/genetics , Interferon Type I/genetics , Poly I , Zebrafish/genetics , Interferon-Induced Helicase, IFIH1
3.
EMBO Mol Med ; 15(10): e18142, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37675820

ABSTRACT

Chronic inflammatory diseases are associated with hematopoietic lineage bias, including neutrophilia and anemia. We have recently identified that the canonical inflammasome mediates the cleavage of the master erythroid transcription factor GATA1 in hematopoietic stem and progenitor cells (HSPCs). We report here that genetic inhibition of Nlrp1 resulted in reduced number of neutrophils and increased erythrocyte counts in zebrafish larvae. We also found that the NLRP1 inflammasome in human cells was inhibited by LRRFIP1 and FLII, independently of DPP9, and both inhibitors regulated hematopoiesis. Mechanistically, erythroid differentiation resulted in ribosomal stress-induced activation of the ZAKα/P38 kinase axis which, in turn, phosphorylated and promoted the assembly of NLRP1 in both zebrafish and human. Finally, inhibition of Zaka with the FDA/EMA-approved drug Nilotinib alleviated neutrophilia in a zebrafish model of neutrophilic inflammation and promoted erythroid differentiation and GATA1 accumulation in K562 cells. In conclusion, our results reveal that the NLRP1 inflammasome regulates hematopoiesis and pave the way to develop novel therapeutic strategies for the treatment of hematopoietic alterations associated with chronic inflammatory and rare diseases.

4.
Eur Respir Rev ; 32(169)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37558264

ABSTRACT

Silicosis as an occupational lung disease has been present in our lives for centuries. Research studies have already developed and implemented many animal models to study the pathogenesis and molecular basis of the disease and enabled the search for treatments. As all experimental animal models used to date have their advantages and disadvantages, there is a continuous search for a better model, which will not only accelerate basic research, but also contribute to clinical aspects and drug development. We review here, for the first time, the main animal models developed to date to study silicosis and the unique advantages of the zebrafish model that make it an optimal complement to other models. Among the main advantages of zebrafish for modelling human diseases are its ease of husbandry, low maintenance cost, external fertilisation and development, its transparency from early life, and its amenability to chemical and genetic screening. We discuss the use of zebrafish as a model of silicosis, its similarities to other animal models and the characteristics of patients at molecular and clinical levels, and show the current state of the art of inflammatory and fibrotic zebrafish models that could be used in silicosis research.


Subject(s)
Silicosis , Zebrafish , Animals , Humans , Disease Models, Animal , Silicon Dioxide , Silicosis/drug therapy , Silicosis/genetics , Silicosis/pathology , Zebrafish/genetics
5.
Dev Comp Immunol ; 145: 104710, 2023 08.
Article in English | MEDLINE | ID: mdl-37080369

ABSTRACT

Fish are the most diverse and successful group of vertebrate animals, with about 30,000 species. The study of fish immunity is of great importance for understanding the evolution of vertebrate immunity, as they are the first animals to show both innate and adaptive immune responses. Although fish immunity is similar to that of mammals, there are obvious differences, such as their dependence of ambient temperature, their poor antibody response, and lack of antibody switching and lymph nodes. In addition, several important differences have also been found between the innate immune responses of fish and mammals. Among these, we will discuss in this review the high resistance of fish to the toxic effects of lipopolysaccharide (LPS) which can be explained by the absence of a Toll-like receptor 4 (Tlr4) ortholog in most fish species or by the inability of the Tlr4/Md2 (Myeloid differentiation 2) complex to recognize LPS, together with the presence of a negative regulator of the LPS signaling complex formed by the TLR-like molecule Rp105 (Radioprotective 105) and Md1. Taken together, these data support the idea that, although TLR4 and RP105 arose from a common ancestor to fish and tetrapods, the TLR4/MD2 receptor complex for LPS recognition arose after their divergence about 450 million years ago.


Subject(s)
Lipopolysaccharides , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Signal Transduction , Fishes , Immunity, Innate , Lymphocyte Antigen 96 , Mammals
6.
Int J Mol Sci ; 24(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36835535

ABSTRACT

Functional or compositional perturbations of the microbiome can occur at different sites, of the body and this dysbiosis has been linked to various diseases. Changes in the nasopharyngeal microbiome are associated to patient's susceptibility to multiple viral infections, supporting the idea that the nasopharynx may be playing an important role in health and disease. Most studies on the nasopharyngeal microbiome have focused on a specific period in the lifespan, such as infancy or the old age, or have other limitations such as low sample size. Therefore, detailed studies analyzing the age- and sex-associated changes in the nasopharyngeal microbiome of healthy people across their whole life are essential to understand the relevance of the nasopharynx in the pathogenesis of multiple diseases, particularly viral infections. One hundred twenty nasopharyngeal samples from healthy subjects of all ages and both sexes were analyzed by 16S rRNA sequencing. Nasopharyngeal bacterial alpha diversity did not vary in any case between age or sex groups. Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were the predominant phyla in all the age groups, with several sex-associated. Acinetobacter, Brevundimonas, Dolosigranulum, Finegoldia, Haemophilus, Leptotrichia, Moraxella, Peptoniphilus, Pseudomonas, Rothia, and Staphylococcus were the only 11 bacterial genera that presented significant age-associated differences. Other bacterial genera such as Anaerococcus, Burkholderia, Campylobacter, Delftia, Prevotella, Neisseria, Propionibacterium, Streptococcus, Ralstonia, Sphingomonas, and Corynebacterium appeared in the population with a very high frequency, suggesting that their presence might be biologically relevant. Therefore, in contrast to other anatomical areas such as the gut, bacterial diversity in the nasopharynx of healthy subjects remains stable and resistant to perturbations throughout the whole life and in both sexes. Age-associated abundance changes were observed at phylum, family, and genus levels, as well as several sex-associated changes probably due to the different levels of sex hormones present in both sexes at certain ages. Our results provide a complete and valuable dataset that will be useful for future research aiming for studying the relationship between changes in the nasopharyngeal microbiome and susceptibility to or severity of multiple diseases.


Subject(s)
Microbiota , Virus Diseases , Male , Female , Humans , RNA, Ribosomal, 16S/genetics , Genes, rRNA , Nasopharynx/microbiology , Microbiota/genetics , Bacteria/genetics , Aging , Virus Diseases/genetics
7.
Emerg Microbes Infect ; 12(1): e2165970, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36606725

ABSTRACT

The development of novel culture-independent techniques of microbial identification has allowed a rapid progress in the knowledge of the nasopharyngeal microbiota and its role in health and disease. Thus, it has been demonstrated that the nasopharyngeal microbiota defends the host from invading pathogens that enter the body through the upper airways by participating in the modulation of innate and adaptive immune responses. The current COVID-19 pandemic has created an urgent need for fast-track research, especially to identify and characterize biomarkers to predict the disease severity and outcome. Since the nasopharyngeal microbiota diversity and composition could potentially be used as a prognosis biomarker for COVID-19 patients, which would pave the way for strategies aiming to reduce the disease severity by modifying such microbiota, dozens of research articles have already explored the possible associations between changes in the nasopharyngeal microbiota and the severity or outcome of COVID-19 patients. Unfortunately, results are controversial, as many studies with apparently similar experimental designs have reported contradictory data. Herein we put together, compare, and discuss all the relevant results on this issue reported to date. Even more interesting, we discuss in detail which are the limitations of these studies, that probably are the main sources of the high variability observed. Therefore, this work is useful not only for people interested in current knowledge about the relationship between the nasopharyngeal microbiota and COVID-19, but also for researchers who want to go further in this field while avoiding the limitations and variability of previous works.


Subject(s)
COVID-19 , Microbiota , Humans , Pandemics , Nasopharynx , Nose
8.
Dev Comp Immunol ; 140: 104626, 2023 03.
Article in English | MEDLINE | ID: mdl-36587712

ABSTRACT

One of the most studied defense mechanisms against invading pathogens, including viruses, are Toll-like receptors (TLRs). Among them, TLR3, TLR7, TLR8 and TLR9 detect different forms of viral nucleic acids in endosomal compartments, whereas TLR2 and TLR4 recognize viral structural and nonstructural proteins outside the cell. Although many different TLRs have been shown to be involved in SARS-CoV-2 infection and detection of different structural proteins, most studies have been performed in vitro and the results obtained are rather contradictory. In this study, we report using the unique advantages of the zebrafish model for in vivo imaging and gene editing that the S1 domain of the Spike protein from the Wuhan strain (S1WT) induced hyperinflammation in zebrafish larvae via a Tlr2/Myd88 signaling pathway and independently of interleukin-1ß production. In addition, S1WT also triggered emergency myelopoiesis, but in this case through a Tlr2/Myd88-independent signaling pathway. These results shed light on the mechanisms involved in the fish host responses to viral proteins.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Toll-Like Receptor 2 , Animals , COVID-19/immunology , Myeloid Differentiation Factor 88/genetics , SARS-CoV-2 , Toll-Like Receptor 2/genetics , Zebrafish/genetics
10.
Dev Comp Immunol ; 138: 104523, 2023 01.
Article in English | MEDLINE | ID: mdl-36055417

ABSTRACT

Silica crystals are potent activators of the inflammasome that cause a fibrotic lung disease, called silicosis, with no effective treatment available. We report here that injection of silica crystals into the hindbrain ventricle of zebrafish embryos led to the initiation of local and systemic immune responses driven through both Toll-like receptors (TLR)- and inflammasome-dependent signaling pathways, followed by induction of pro-fibrotic markers. Genetic and pharmacological analysis revealed that the Nlrp3 inflammasome regulated silica crystal-induced inflammation and pyroptotic cell death, but not emergency myelopoiesis. In addition, Cxcl8a/Cxcr2-dependent recruitment of myeloid cells to silica crystals was required to promote emergency myelopoiesis and systemic inflammation. The zebrafish model of silicosis developed here shed light onto the molecular mechanisms involved in the activation of the immune system by silica crystals.


Subject(s)
Inflammasomes , Silicosis , Animals , Immunity , Inflammasomes/metabolism , Inflammation , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Silicon Dioxide/adverse effects , Toll-Like Receptors/metabolism , Zebrafish/metabolism
11.
Autophagy ; 19(5): 1582-1595, 2023 05.
Article in English | MEDLINE | ID: mdl-36310368

ABSTRACT

Much of our understanding of the intracellular regulation of macroautophagy/autophagy comes from in vitro studies. However, there remains a paucity of knowledge about how this process is regulated within different tissues during development, aging and disease in vivo. Because upregulation of autophagy is considered a promising therapeutic strategy for the treatment of diverse disorders, it is vital that we understand how this pathway functions in different tissues and this is best done by in vivo analysis. Similarly, to understand the role of autophagy in the pathogenesis of disease, it is important to study this process in the whole animal to investigate how tissue-specific changes in flux and cell-autonomous versus non-cell-autonomous effects alter disease progression. To this end, we have developed an inducible expression system to up- or downregulate autophagy in vivo, in zebrafish. We have used a modified version of the Gal4-UAS expression system to allow inducible expression of autophagy up- or downregulating transgenes by addition of tamoxifen. Using this inducible expression system, we have tested which transgenes robustly up- or downregulate autophagy and have validated these tools using Lc3-II blots and puncta analysis and disease rescue in a zebrafish model of neurodegeneration. These tools allow the temporal control of autophagy via the administration of tamoxifen and spatial control via tissue or cell-specific ERT2-Gal4 driver lines and will enable the investigation of how cell- or tissue-specific changes in autophagic flux affect processes such as aging, inflammation and neurodegeneration in vivo.Abbreviations: ANOVA: analysis of variance; Atg: autophagy related; Bcl2l11/Bim: BCL2 like 11; d.p.f.: days post-fertilization; Cryaa: crystallin, alpha a: DMSO: dimethyl sulfoxide; Elavl3: ELAV like neuron-specific RNA binding protein 3; ER: estrogen receptor; ERT2: modified ligand-binding domain of human ESR1/estrogen receptor α; Gal4: galactose-responsive transcription factor 4; GFP: green fluorescent protein; h.p.f.: hours post-fertilization; HSP: heat-shock protein; Map1lc3/Lc3: microtubule-associated protein 1 light chain 3; RFP: red fluorescent protein; SD: standard deviation; SEM: standard error of the mean; UAS: upstream activating sequence; Ubb: ubiquitin b.


Subject(s)
Autophagy , Zebrafish , Animals , Humans , Autophagy/genetics , Zebrafish/genetics , Zebrafish Proteins/metabolism , Neurons/metabolism , Green Fluorescent Proteins/metabolism , Tamoxifen
12.
FEMS Microbiol Rev ; 47(1)2023 01 16.
Article in English | MEDLINE | ID: mdl-36323404

ABSTRACT

Although COVID-19 has only recently appeared, research studies have already developed and implemented many animal models for deciphering the secrets of the disease and provided insights into the biology of SARS-CoV-2. However, there are several major factors that complicate the study of this virus in model organisms, such as the poor infectivity of clinical isolates of SARS-CoV-2 in some model species, and the absence of persistent infection, immunopathology, severe acute respiratory distress syndrome, and, in general, all the systemic complications which characterize COVID-19 clinically. Another important limitation is that SARS-CoV-2 mainly causes severe COVID-19 in older people with comorbidities, which represents a serious problem when attempting to use young and immunologically naïve laboratory animals in COVID-19 testing. We review here the main animal models developed so far to study COVID-19 and the unique advantages of the zebrafish model that may help to contribute to understand this disease, in particular to the identification and repurposing of drugs to treat COVID-19, to reveal the mechanism of action and side-effects of Spike-based vaccines, and to decipher the high susceptibility of aged people to COVID-19.


Subject(s)
COVID-19 , Animals , Humans , SARS-CoV-2 , Zebrafish , COVID-19 Testing
13.
Sci Adv ; 8(37): eabo0732, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36112681

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic turned the whole world upside down in a short time. One of the main challenges faced has been to understand COVID-19-associated life-threatening hyperinflammation, the so-called cytokine storm syndrome (CSS). We report here the proinflammatory role of Spike (S) proteins from different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern in zebrafish. We found that wild-type/Wuhan variant S1 (S1WT) promoted neutrophil and macrophage recruitment, local and systemic hyperinflammation, emergency myelopoiesis, and hemorrhages. In addition, S1γ was more proinflammatory S1δ was less proinflammatory than S1WT, and, notably, S1ß promoted delayed and long-lasting inflammation. Pharmacological inhibition of the canonical inflammasome alleviated S1-induced inflammation and emergency myelopoiesis. In contrast, genetic inhibition of angiotensin-converting enzyme 2 strengthened the proinflammatory activity of S1, and angiotensin (1-7) fully rescued S1-induced hyperinflammation and hemorrhages. These results shed light into the mechanisms orchestrating the COVID-19-associated CSS and the host immune response to different SARS-CoV-2 S protein variants.


Subject(s)
COVID-19 , Inflammation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/genetics , Animals , Humans , Inflammasomes , Inflammation/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Zebrafish/metabolism
14.
Dev Comp Immunol ; 132: 104404, 2022 07.
Article in English | MEDLINE | ID: mdl-35341794

ABSTRACT

Chronic diseases and hematopoietic disorders are associated with dysregulation of the inflammasome. Our group has recently reported the relevance of the inflammasome in the differentiation of hematopoietic stem and progenitor cells. However, the impact of the inflammasome of myeloid cells in the regulation of hematopoiesis is largely unknown. In this study, we used the unique advantages of the zebrafish model to demonstrate that genetic inhibition of macrophage inflammasome resulted in increased number of macrophages in larvae with skin inflammation without affecting erythrocyte and neutrophil counts. Similarly, the inhibition of the neutrophil inflammasome by the same strategy resulted in increased number of neutrophils in larvae with skin inflammation but did not affect erythrocytes and macrophages. Consistently, hyperactivation of the inflammasome in neutrophils in this model promoted neutrophil death, which was recovered by pharmacological inhibition of Gasdermin E. We conclude that the myeloid inflammasome autonomously regulates pyroptotic cell death in chronic inflammation through a Gasdermin E-dependent pathway in zebrafish.


Subject(s)
Pyroptosis , Zebrafish , Animals , Chronic Disease , Inflammasomes/metabolism , Inflammation/metabolism , Macrophages/metabolism , Neutrophils/metabolism , Zebrafish/metabolism
15.
Dev Comp Immunol ; 115: 103874, 2021 02.
Article in English | MEDLINE | ID: mdl-32987011

ABSTRACT

Since inflammasomes were discovered in the early 21st century, knowledge about their biology has multiplied exponentially. These cytosolic multiprotein complexes alert the immune system about the presence of infection or tissue damage, and regulate the subsequent inflammatory responses. As inflammasome dysregulation is increasingly associated with numerous autoinflammatory disorders, there is an urgent need for further research into the inflammasome's involvement in the pathogenesis of such diseases in order to identify novel therapeutic targets and treatments. The zebrafish has become a widely used animal model to study human diseases in recent years, and has already provided relevant findings in the field of inflammasome biology including the identification of new components and pathways. We provide a detailed analysis of current knowledge on neutrophil inflammasome biology and compare its features with those of the better known macrophage inflammasome, focusing on its contribution to innate immunity and its relevance for human health. Importantly, a large body of evidence points to a link between neutrophil inflammasome dysfunction and many neutrophil-mediated human diseases, but the real contribution of the neutrophil inflammasome to the pathogenesis of these disorders is largely unknown. Although neutrophils have remained in the shadow of macrophages and monocytes in the field of inflammasome research since the discovery of these multiprotein platforms, recent studies strongly suggest that the importance of the neutrophil inflammasome has been underestimated.


Subject(s)
Inflammasomes/metabolism , Neutrophils/immunology , Animals , Disease Models, Animal , GTP-Binding Proteins/metabolism , Humans , Macrophages/immunology , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neutrophils/metabolism , Zebrafish
16.
Proc Natl Acad Sci U S A ; 117(25): 14220-14230, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32513741

ABSTRACT

Because raising cAMP enhances 26S proteasome activity and the degradation of cell proteins, including the selective breakdown of misfolded proteins, we investigated whether agents that raise cGMP may also regulate protein degradation. Treating various cell lines with inhibitors of phosphodiesterase 5 or stimulators of soluble guanylyl cyclase rapidly enhanced multiple proteasome activities and cellular levels of ubiquitinated proteins by activating protein kinase G (PKG). PKG stimulated purified 26S proteasomes by phosphorylating a different 26S component than is modified by protein kinase A. In cells and cell extracts, raising cGMP also enhanced within minutes ubiquitin conjugation to cell proteins. Raising cGMP, like raising cAMP, stimulated the degradation of short-lived cell proteins, but unlike cAMP, also markedly increased proteasomal degradation of long-lived proteins (the bulk of cell proteins) without affecting lysosomal proteolysis. We also tested if raising cGMP, like cAMP, can promote the degradation of mutant proteins that cause neurodegenerative diseases. Treating zebrafish models of tauopathies or Huntington's disease with a PDE5 inhibitor reduced the levels of the mutant huntingtin and tau proteins, cell death, and the resulting morphological abnormalities. Thus, PKG rapidly activates cytosolic proteasomes, protein ubiquitination, and overall protein degradation, and agents that raise cGMP may help combat the progression of neurodegenerative diseases.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/metabolism , Cyclic GMP/metabolism , Neurodegenerative Diseases/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Animals , Animals, Genetically Modified , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Disease Models, Animal , Humans , Phosphorylation , Tauopathies , Ubiquitin/metabolism , Ubiquitinated Proteins/metabolism , Ubiquitination , Zebrafish , tau Proteins/metabolism
17.
Dev Comp Immunol ; 100: 103428, 2019 11.
Article in English | MEDLINE | ID: mdl-31276698

ABSTRACT

Inflammasomes are pivotal cytosolic molecular platforms involved in infection resistance. As multiprotein complexes, they consist of NOD-like receptors (NLRs), the adaptor proteins apoptosis-associated speck-like protein containing a CARD (ASC) and the effector molecules caspase-1 and caspase-11, whose assembly and activation depends on homotypic interactions. Here we describe WD repeat containing protein 90 (WDR90) as a new inflammasome component. We found that zebrafish wdr90 is highly induced by guanylate binding protein 4 (Gbp4) independently of inflammasome activation and caspase-1 activity. This gene encodes an evolutionarily conserved protein with unknown functions that contains several WD40 domains, which are involved in coordinating multiprotein complex assembly. Functional studies in zebrafish larvae showed that forced expression of wdr90 increased caspase-1 activity and inflammasome-dependent resistance to Salmonella enterica serovar Typhimurium infection. Wdr90 acted upstream of zebrafish caspase a (Caspa), the functional homolog of mammalian caspase-1, and Asc. Reconstitution experiments of the human inflammasome in HEK293 cells demonstrated that WDR90 was able to physically interact with and to alter the cellular distribution of NLRC4, but not of NLRP3 and AIM2. These results highlight the complexity of the inflammasome and the interest of studying fish immunity to understand not only the evolution of the immune system but also human immunity.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , Calcium-Binding Proteins/metabolism , Cytoskeletal Proteins/immunology , Inflammasomes/immunology , Salmonella Infections/immunology , Salmonella typhimurium/immunology , Zebrafish Proteins/immunology , Animals , CARD Signaling Adaptor Proteins/immunology , Calcium-Binding Proteins/immunology , Caspase 1/immunology , Caspase 1/metabolism , Cytoskeletal Proteins/metabolism , DNA-Binding Proteins/immunology , DNA-Binding Proteins/metabolism , Disease Models, Animal , Disease Resistance/immunology , GTP-Binding Proteins/metabolism , HEK293 Cells , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Binding/immunology , Salmonella Infections/microbiology , Zebrafish , Zebrafish Proteins/metabolism
18.
Immunity ; 51(1): 50-63.e5, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31174991

ABSTRACT

Chronic inflammatory diseases are associated with altered hematopoiesis that could result in neutrophilia and anemia. Here we report that genetic or chemical manipulation of different inflammasome components altered the differentiation of hematopoietic stem and progenitor cells (HSPC) in zebrafish. Although the inflammasome was dispensable for the emergence of HSPC, it was intrinsically required for their myeloid differentiation. In addition, Gata1 transcript and protein amounts increased in inflammasome-deficient larvae, enforcing erythropoiesis and inhibiting myelopoiesis. This mechanism is evolutionarily conserved, since pharmacological inhibition of the inflammasome altered erythroid differentiation of human erythroleukemic K562 cells. In addition, caspase-1 inhibition rapidly upregulated GATA1 protein in mouse HSPC promoting their erythroid differentiation. Importantly, pharmacological inhibition of the inflammasome rescued zebrafish disease models of neutrophilic inflammation and anemia. These results indicate that the inflammasome plays a major role in the pathogenesis of neutrophilia and anemia of chronic diseases and reveal druggable targets for therapeutic interventions.


Subject(s)
Anemia/immunology , Fish Diseases/immunology , GATA1 Transcription Factor/metabolism , Inflammasomes/metabolism , Inflammation/immunology , Neutrophils/immunology , Zebrafish Proteins/metabolism , Zebrafish/physiology , Animals , Animals, Genetically Modified , Caspase 1/genetics , Caspase 1/metabolism , Cell Differentiation , Erythroid Cells/cytology , GATA1 Transcription Factor/genetics , Gene Expression Regulation, Developmental , Hematopoiesis , Humans , Inflammasomes/genetics , K562 Cells , Male , Mice , Mice, Inbred C57BL , Proteolysis , Zebrafish Proteins/genetics
19.
Fish Shellfish Immunol ; 90: 215-222, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31039438

ABSTRACT

The zebrafish has unique advantages for understanding the evolution of vertebrate immunity and to model human diseases. In this review, we will firstly give an overview of the current knowledge on vertebrate innate immune receptors with special emphasis on the inflammasome and then summarize the main contribution of the zebrafish model to this field, including to the identification of novel inflammasome components and to the mechanisms involved in its activation, assembly and clearance of intracellular bacteria.


Subject(s)
Biological Evolution , Fish Proteins/genetics , Immunity, Innate , Receptors, Immunologic/genetics , Zebrafish/immunology , Animals , Disease Models, Animal , Evolution, Molecular , Fish Proteins/metabolism , Immunity, Innate/genetics , Models, Animal , Receptors, Immunologic/metabolism , Zebrafish/genetics , Zebrafish/metabolism
20.
Front Immunol ; 8: 1375, 2017.
Article in English | MEDLINE | ID: mdl-29123523

ABSTRACT

Many proteins contain tandemly repeated modules of several amino acids, which act as the building blocks that form the underlying architecture of a specific protein-binding interface. Among these motifs and one of the most frequently observed is ankyrin repeats (ANK), which consist of 33 amino acid residues that are highly conserved. ANK domains span a wide range of functions, including protein-protein interactions, such as the recruitment of substrate to the catalytic domain of an enzyme, or the assembly of stable multiprotein complexes. Here, we report the identification of an evolutionarily conserved protein, that we term Caiap (from CARD- and ANK-containing Inflammasome Adaptor Protein), which has an N-terminal CARD domain and 16 C-terminal ANK domains and is required for the inflammasome-dependent resistance to Salmonella Typhimurium in zebrafish. Intriguingly, Caiap is highly conserved from cartilaginous fish to marsupials but is absent in placental mammals. Mechanistically, Caiap acts downstream flagellin and interacts with catalytic active Caspa, the functional homolog of mammalian caspase-1, through its ANK domain, while its CARD domain promotes its self-oligomerization. Our results therefore point to ANK domain-containing proteins as key inflammasome adaptors required for the stabilization of active caspase-1 in functionally stable, high molecular weight complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...