Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 14(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38539995

ABSTRACT

The aim of the study was to investigate the effect of calcareous marine algae (Lithotamium calcareum)-based rumen content buffer (CMA) included in concentrated feed within total mixed ration (TMR), fed to 34 peak lactation (87-144 days in milk) Holstein dairy cows, randomized into two groups (group A, n = 17; group B, n = 17), wearing collars with accelerometers, and housed a in barn with automatic feed-weigh troughs. During the first phase P1, group A received TMR with CMA (TMR-E) and group B was fed TMR without the buffer (TMR-C). For P2, the treatments in the groups were exchanged. Feed intake, feeding time (FT), rumination time (RT), milk yield, milk composition, and rumen pH were measured by barn technologies, and rumen fluid and feces composition were analyzed in the laboratory. Differences between the TMR-E and TMR-C in most parameters under study were statistically insignificant, except overall FT and RT, which differed significantly between the groups. Group A, feeding at P1 by TMR-E, exhibited higher FT and RT than Group B (202 min/cow/day vs. 184 min/cow/day, and 486 min/cow/day vs. 428 min/cow/day, respectively). The RT significantly increased after switching from TMR-C to TMR-E. This implies that the buffer effect is delayed and persists after the withdrawal. In the group of cows that received control TMR without buffer in the first phase, RT and milk protein content increased significantly in the first week after the addition of buffer.

2.
Sci Rep ; 13(1): 21961, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38081855

ABSTRACT

This study investigated the combined effects of nitrate (NT) and medium-chain fatty acids (MCFA), including C8, C10, C12, and C14, on methane (CH4) production, rumen fermentation characteristics, and rumen bacteria using a 24 h batch incubation technique. Four types of treatments were used: control (no nitrate, no MCFA), NT (nitrate at 3.65 mM), NT + MCFA (nitrate at 3.65 mM + one of the four MCFA at 500 mg/L), and NT + MCFA/MCFA (nitrate at 3.65 mM + a binary combination of MCFA at 250 and 250 mg/L). All treatments decreased (P < 0.001) methanogenesis (mL/g dry matter incubated) compared with the control, but their efficiency was dependent on the MCFA type. The most efficient CH4 inhibitor was the NT + C10 treatment (- 40%). The combinations containing C10 and C12 had the greatest effect on bacterial alpha and beta diversity and relative microbial abundance (P < 0.001). Next-generation sequencing showed that the family Succinivibrionaceae was favored in treatments with the greatest CH4 inhibition at the expense of Prevotella and Ruminococcaceae. Furthermore, the relative abundance of Archaea decreased (P < 0.05) in the NT + C10 and NT + C10/C12 treatments. These results confirm that the combination of NT with MCFA (C10 and C12 in particular) may effectively reduce CH4 production.


Subject(s)
Nitrates , Rumen , Animals , Nitrates/pharmacology , Nitrates/metabolism , Fermentation , Rumen/microbiology , Fatty Acids/metabolism , Bacteria/genetics , Methane/metabolism , Diet , Animal Feed/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...