Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Nat Commun ; 15(1): 1415, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418465

ABSTRACT

Optic neuritis (ON) is associated with numerous immune-mediated inflammatory diseases, but 50% patients are ultimately diagnosed with multiple sclerosis (MS). Differentiating MS-ON from non-MS-ON acutely is challenging but important; non-MS ON often requires urgent immunosuppression to preserve vision. Using data from the United Kingdom Biobank we showed that combining an MS-genetic risk score (GRS) with demographic risk factors (age, sex) significantly improved MS prediction in undifferentiated ON; one standard deviation of MS-GRS increased the Hazard of MS 1.3-fold (95% confidence interval 1.07-1.55, P < 0.01). Participants stratified into quartiles of predicted risk developed incident MS at rates varying from 4% (95%CI 0.5-7%, lowest risk quartile) to 41% (95%CI 33-49%, highest risk quartile). The model replicated across two cohorts (Geisinger, USA, and FinnGen, Finland). This study indicates that a combined model might enhance individual MS risk stratification, paving the way for precision-based ON treatment and earlier MS disease-modifying therapy.


Subject(s)
Multiple Sclerosis , Optic Neuritis , Humans , Genetic Risk Score , Multiple Sclerosis/diagnosis , Multiple Sclerosis/genetics , Multiple Sclerosis/complications , Optic Neuritis/diagnosis , Optic Neuritis/genetics , Optic Neuritis/complications , Risk Factors , Finland
2.
BMC Med ; 22(1): 32, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38281920

ABSTRACT

BACKGROUND: Higher maternal pre-pregnancy body mass index (BMI) is associated with adverse pregnancy and perinatal outcomes. However, whether these associations are causal remains unclear. METHODS: We explored the relation of maternal pre-/early-pregnancy BMI with 20 pregnancy and perinatal outcomes by integrating evidence from three different approaches (i.e. multivariable regression, Mendelian randomisation, and paternal negative control analyses), including data from over 400,000 women. RESULTS: All three analytical approaches supported associations of higher maternal BMI with lower odds of maternal anaemia, delivering a small-for-gestational-age baby and initiating breastfeeding, but higher odds of hypertensive disorders of pregnancy, gestational hypertension, preeclampsia, gestational diabetes, pre-labour membrane rupture, induction of labour, caesarean section, large-for-gestational age, high birthweight, low Apgar score at 1 min, and neonatal intensive care unit admission. For example, higher maternal BMI was associated with higher risk of gestational hypertension in multivariable regression (OR = 1.67; 95% CI = 1.63, 1.70 per standard unit in BMI) and Mendelian randomisation (OR = 1.59; 95% CI = 1.38, 1.83), which was not seen for paternal BMI (OR = 1.01; 95% CI = 0.98, 1.04). Findings did not support a relation between maternal BMI and perinatal depression. For other outcomes, evidence was inconclusive due to inconsistencies across the applied approaches or substantial imprecision in effect estimates from Mendelian randomisation. CONCLUSIONS: Our findings support a causal role for maternal pre-/early-pregnancy BMI on 14 out of 20 adverse pregnancy and perinatal outcomes. Pre-conception interventions to support women maintaining a healthy BMI may reduce the burden of obstetric and neonatal complications. FUNDING: Medical Research Council, British Heart Foundation, European Research Council, National Institutes of Health, National Institute for Health Research, Research Council of Norway, Wellcome Trust.


Subject(s)
Diabetes, Gestational , Hypertension, Pregnancy-Induced , Pre-Eclampsia , Female , Humans , Infant, Newborn , Pregnancy , Body Mass Index , Cesarean Section , Hypertension, Pregnancy-Induced/epidemiology , Pre-Eclampsia/epidemiology , Mendelian Randomization Analysis
3.
Int J Epidemiol ; 53(1)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38205890

ABSTRACT

BACKGROUND: Diabetes (regardless of type) and obesity are associated with a range of musculoskeletal disorders. The causal mechanisms driving these associations are unknown for many upper limb pathologies. We used genetic techniques to test the causal link between glycemia, obesity and musculoskeletal conditions. METHODS: In the UK Biobank's unrelated European cohort (N = 379 708) we performed mendelian randomisation (MR) analyses to test for a causal effect of long-term high glycaemia and adiposity on four musculoskeletal pathologies: frozen shoulder, Dupuytren's disease, carpal tunnel syndrome and trigger finger. We also performed single-gene MR using rare variants in the GCK gene. RESULTS: Using MR, we found evidence that long-term high glycaemia has a causal role in the aetiology of upper limb conditions. A 10-mmol/mol increase in genetically predicted haemoglobin A1C (HbA1c) was associated with frozen shoulder: odds ratio (OR) = 1.50 [95% confidence interval (CI), 1.20-1.88], Dupuytren's disease: OR = 1.17 (95% CI, 1.01-1.35), trigger finger: OR = 1.30 (95% CI, 1.09-1.55) and carpal tunnel syndrome: OR = 1.20 (95% CI, 1.09-1.33). Carriers of GCK mutations have increased odds of frozen shoulder: OR = 7.16 (95% CI, 2.93-17.51) and carpal tunnel syndrome: OR = 2.86 (95% CI, 1.50-5.44) but not Dupuytren's disease or trigger finger. We found evidence that an increase in genetically predicted body mass index (BMI) of 5 kg/m2 was associated with carpal tunnel syndrome: OR = 1.13 (95% CI, 1.10-1.16) and associated negatively with Dupuytren's disease: OR = 0.94 (95% CI, 0.90-0.98), but no evidence of association with frozen shoulder or trigger finger. Trigger finger (OR 1.96 (95% CI, 1.42-2.69) P = 3.6e-05) and carpal tunnel syndrome [OR 1.63 (95% CI, 1.36-1.95) P = 8.5e-08] are associated with genetically predicted unfavourable adiposity increase of one standard deviation of body fat. CONCLUSIONS: Our study consistently demonstrates a causal role of long-term high glycaemia in the aetiology of upper limb musculoskeletal conditions. Clinicians treating diabetes patients should be aware of these complications in clinic, specifically those managing the care of GCK mutation carriers. Upper limb musculoskeletal conditions should be considered diabetes complications.


Subject(s)
Bursitis , Carpal Tunnel Syndrome , Diabetes Mellitus , Dupuytren Contracture , Hyperglycemia , Musculoskeletal Diseases , Trigger Finger Disorder , Humans , Dupuytren Contracture/epidemiology , Dupuytren Contracture/genetics , Dupuytren Contracture/complications , Carpal Tunnel Syndrome/epidemiology , Carpal Tunnel Syndrome/genetics , Carpal Tunnel Syndrome/complications , Trigger Finger Disorder/complications , Hyperglycemia/complications , Hyperglycemia/epidemiology , Hyperglycemia/genetics , Upper Extremity , Musculoskeletal Diseases/complications , Risk Factors , Bursitis/complications , Obesity/complications , Obesity/epidemiology , Obesity/genetics
4.
BMC Med ; 21(1): 501, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110912

ABSTRACT

BACKGROUND: Mental health conditions represent one of the major groups of non-transmissible diseases. Physical activity (PA) and sedentary time (ST) have been shown to affect mental health outcomes in opposite directions. In this study, we use accelerometery-derived measures of PA and ST from the UK Biobank (UKB) and depression, anxiety and well-being data from the UKB mental health questionnaire as well as published summary statistics to explore the causal associations between these phenotypes. METHODS: We used MRlap to test if objectively measured PA and ST associate with mental health outcomes using UKB data and summary statistics from published genome-wide association studies. We also tested for bidirectional associations. We performed sex stratified as well as sensitivity analyses. RESULTS: Genetically instrumented higher PA was associated with lower odds of depression (OR = 0.92; 95% CI: 0.88, 0.97) and depression severity (beta = - 0.11; 95% CI: - 0.18, - 0.04), Genetically instrumented higher ST was associated higher odds of anxiety (OR = 2.59; 95% CI: 1.10, 4.60). PA was associated with higher well-being (beta = 0.11, 95% CI: 0.04; 0.18) and ST with lower well-being (beta = - 0.18; 95% CI: - 0.32, - 0.03). Similar findings were observed when stratifying by sex. There was evidence for a bidirectional relationship, with higher genetic liability to depression associated with lower PA (beta = - 0.25, 95% CI: - 0.42; - 0.08) and higher well-being associated with higher PA (beta = 0.15; 95% CI: 0.05, 0.25). CONCLUSIONS: We have demonstrated the bidirectional effects of both PA and ST on a range of mental health outcomes using objectively measured predictors and MR methods for causal inference. Our findings support a causal role for PA and ST in the development of mental health problems and in affecting well-being.


Subject(s)
Depression , Sedentary Behavior , Humans , Depression/epidemiology , Genome-Wide Association Study , Anxiety/epidemiology , Exercise , Mendelian Randomization Analysis/methods
5.
Sci Rep ; 13(1): 19493, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945700

ABSTRACT

Falls represent a huge health and economic burden. Whilst many factors are associated with fall risk (e.g. obesity and physical inactivity) there is limited evidence for the causal role of these risk factors. Here, we used hospital and general practitioner records in UK Biobank, deriving a balance specific fall phenotype in 20,789 cases and 180,658 controls, performed a Genome Wide Association Study (GWAS) and used Mendelian Randomisation (MR) to test causal pathways. GWAS indicated a small but significant SNP-based heritability (4.4%), identifying one variant (rs429358) in APOE at genome-wide significance (P < 5e-8). MR provided evidence for a causal role of higher BMI on higher fall risk even in the absence of adverse metabolic consequences. Depression and neuroticism predicted higher risk of falling, whilst higher hand grip strength and physical activity were protective. Our findings suggest promoting lower BMI, higher physical activity as well as psychological health is likely to reduce falls.


Subject(s)
Genome-Wide Association Study , Hand Strength , Humans , Risk Factors , Obesity/genetics , Mendelian Randomization Analysis
6.
Eur J Epidemiol ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37938447

ABSTRACT

Diseases diagnosed in adulthood may have antecedents throughout (including prenatal) life. Gaining a better understanding of how exposures at different stages in the lifecourse influence health outcomes is key to elucidating the potential benefits of disease prevention strategies. Mendelian randomisation (MR) is increasingly used to estimate causal effects of exposures across the lifecourse on later life outcomes. This systematic literature review explores MR methods used to perform lifecourse investigations and reviews previous work that has utilised MR to elucidate the effects of factors acting at different stages of the lifecourse. We conducted searches in PubMed, Embase, Medline and MedRXiv databases. Thirteen methodological studies were identified. Four studies focused on the impact of time-varying exposures in the interpretation of "standard" MR techniques, five presented methods for repeat measures of the same exposure, and four described methodological approaches to handling multigenerational exposures. A further 127 studies presented the results of an applied research question. Over half of these estimated effects in a single generation and were largely confined to the exploration of questions regarding body composition. The remaining mostly estimated maternal effects. There is a growing body of research focused on the development and application of MR methods to address lifecourse research questions. The underlying assumptions require careful consideration and the interpretation of results rely on select conditions. Whilst we do not advocate for a particular strategy, we encourage practitioners to make informed decisions on how to approach a research question in this field with a solid understanding of the limitations present and how these may be affected by the research question, modelling approach, instrument selection, and data availability.

7.
BMC Med Genomics ; 16(1): 231, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37784116

ABSTRACT

BACKGROUND: Vasomotor symptoms (VMS) can often significantly impact women's quality of life at menopause. In vivo studies have shown that increased neurokinin B (NKB) / neurokinin 3 receptor (NK3R) signalling contributes to VMS, with previous genetic studies implicating the TACR3 gene locus that encodes NK3R. Large-scale genomic analyses offer the possibility of biological insights but few such studies have collected data on VMS, while proxy phenotypes such as hormone replacement therapy (HRT) use are likely to be affected by changes in clinical practice. We investigated the genetic basis of VMS by analysing routinely-collected health records. METHODS: We performed a GWAS of VMS derived from linked primary-care records and cross-sectional self-reported HRT use in up to 153,152 women from UK Biobank, a population-based cohort. In a subset of this cohort (n = 39,356), we analysed exome-sequencing data to test the association with VMS of rare deleterious genetic variants. Finally, we used Mendelian randomisation analysis to investigate the reasons for HRT use over time. RESULTS: Our GWAS of health-records derived VMS identified a genetic signal near TACR3 associated with a lower risk of VMS (OR=0.76 (95% CI 0.72,0.80) per A allele, P=3.7x10-27), which was consistent with previous studies, validating this approach. Conditional analyses demonstrated independence of genetic signals for puberty timing and VMS at the TACR3 locus, including a rare variant predicted to reduce functional NK3R levels that was associated with later menarche (P = 5 × 10-9) but showed no association with VMS (P = 0.6). Younger menopause age was causally-associated with greater HRT use before 2002 but not after. CONCLUSIONS: We provide support for TACR3 in the genetic basis of VMS but unexpectedly find that rare genomic variants predicted to lower NK3R levels did not modify VMS, despite the proven efficacy of NK3R antagonists. Using genomics we demonstrate changes in genetic associations with HRT use over time, arising from a change in clinical practice since the early 2000s, which is likely to reflect a switch from preventing post-menopausal complications in women with earlier menopause to primarily treating VMS. Our study demonstrates that integrating routinely-collected primary care health records and genomic data offers great potential for exploring the genetic basis of symptoms.


Subject(s)
Genome-Wide Association Study , Hot Flashes , Female , Humans , Hot Flashes/genetics , Quality of Life , Cross-Sectional Studies , Menopause/genetics , Primary Health Care
8.
PLoS Genet ; 19(9): e1010934, 2023 09.
Article in English | MEDLINE | ID: mdl-37733769

ABSTRACT

Findings from genome-wide association studies have facilitated the generation of genetic predictors for many common human phenotypes. Stratifying individuals misaligned to a genetic predictor based on common variants may be important for follow-up studies that aim to identify alternative causal factors. Using genome-wide imputed genetic data, we aimed to classify 158,951 unrelated individuals from the UK Biobank as either concordant or deviating from two well-measured phenotypes. We first applied our methods to standing height: our primary analysis classified 244 individuals (0.15%) as misaligned to their genetically predicted height. We show that these individuals are enriched for self-reporting being shorter or taller than average at age 10, diagnosed congenital malformations, and rare loss-of-function variants in genes previously catalogued as causal for growth disorders. Secondly, we apply our methods to LDL cholesterol (LDL-C). We classified 156 (0.12%) individuals as misaligned to their genetically predicted LDL-C and show that these individuals were enriched for both clinically actionable cardiovascular risk factors and rare genetic variants in genes previously shown to be involved in metabolic processes. Individuals whose LDL-C was higher than expected based on the genetic predictor were also at higher risk of developing coronary artery disease and type-two diabetes, even after adjustment for measured LDL-C, BMI and age, suggesting upward deviation from genetically predicted LDL-C is indicative of generally poor health. Our results remained broadly consistent when performing sensitivity analysis based on a variety of parametric and non-parametric methods to define individuals deviating from polygenic expectation. Our analyses demonstrate the potential importance of quantitatively identifying individuals for further follow-up based on deviation from genetic predictions.


Subject(s)
Coronary Artery Disease , Genome-Wide Association Study , Humans , Child , Cholesterol, LDL/genetics , Phenotype , Coronary Artery Disease/genetics , Follow-Up Studies , Mendelian Randomization Analysis , Risk Factors , Polymorphism, Single Nucleotide
9.
BMC Med ; 21(1): 355, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37710313

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) has a significant impact on global burden of disease. Complications in clinical management can occur when response to pharmacological modalities is considered inadequate and symptoms persist (treatment-resistant depression (TRD)). We aim to investigate inflammation, proxied by C-reactive protein (CRP) levels, and body mass index (BMI) as putative causal risk factors for depression and subsequent treatment resistance, leveraging genetic information to avoid confounding via Mendelian randomisation (MR). METHODS: We used the European UK Biobank subcohort ([Formula: see text]), the mental health questionnaire (MHQ) and clinical records. For treatment resistance, a previously curated phenotype based on general practitioner (GP) records and prescription data was employed. We applied univariable and multivariable MR models to genetically predict the exposures and assess their causal contribution to a range of depression outcomes. We used a range of univariable, multivariable and mediation MR models techniques to address our research question with maximum rigour. In addition, we developed a novel statistical procedure to apply pleiotropy-robust multivariable MR to one sample data and employed a Bayesian bootstrap procedure to accurately quantify estimate uncertainty in mediation analysis which outperforms standard approaches in sparse binary outcomes. Given the flexibility of the one-sample design, we evaluated age and sex as moderators of the effects. RESULTS: In univariable MR models, genetically predicted BMI was positively associated with depression outcomes, including MDD ([Formula: see text] ([Formula: see text] CI): 0.133(0.072, 0.205)) and TRD (0.347(0.002, 0.682)), with a larger magnitude in females and with age acting as a moderator of the effect of BMI on severity of depression (0.22(0.050, 0.389)). Multivariable MR analyses suggested an independent causal effect of BMI on TRD not through CRP (0.395(0.004, 0.732)). Our mediation analyses suggested that the effect of CRP on severity of depression was partly mediated by BMI. Individuals with TRD ([Formula: see text]) observationally had higher CRP and BMI compared with individuals with MDD alone and healthy controls. DISCUSSION: Our work supports the assertion that BMI exerts a causal effect on a range of clinical and questionnaire-based depression phenotypes, with the effect being stronger in females and in younger individuals. We show that this effect is independent of inflammation proxied by CRP levels as the effects of CRP do not persist when jointly estimated with BMI. This is consistent with previous evidence suggesting that overweight contributed to depression even in the absence of any metabolic consequences. It appears that BMI exerts an effect on TRD that persists when we account for BMI influencing MDD.


Subject(s)
Depressive Disorder, Major , Female , Humans , Body Mass Index , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/genetics , Bayes Theorem , Depression/epidemiology , Depression/genetics , Inflammation/genetics
10.
Transl Psychiatry ; 13(1): 251, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37433779

ABSTRACT

Previous studies have linked higher body mass index (BMI) to lower subjective well-being in adult European ancestry populations. However, our understanding of these relationships across different populations is limited. Here, we investigated the association between BMI and well-being in people of (a) East Asian and (b) European ancestry in the China Kadoorie Biobank (CKB) and UK Biobank (UKB), respectively. Mendelian randomisation (MR) methods were used to test the relationship between BMI with (a) health satisfaction and (b) life satisfaction. One-sample MR enabled us to test effects in men and women separately and to test the role of cultural contexts by stratifying our analyses by urban and rural home location in both China and the UK. Further, we implemented a control function method to test the linearity of the BMI-well-being relationship. We found evidence of different associations between BMI and well-being in individuals of East Asian versus European ancestry. For example, a genetically instrumented higher BMI tentatively associated with higher health satisfaction in people of East Asian ancestry, especially in females (ß: 0.041, 95% CI: 0.002, 0.081). In contrast, there was a robust inverse association between higher genetically instrumented BMI and health satisfaction in all European ancestry UKB participants (ß: -0.183, 95% CI: -0.200, -0.165, Pdifference < 1.00E-15). We also showed the importance of considering non-linear relationships in the MR framework by providing evidence of non-linear relationships between BMI and health and life satisfaction. Overall, our study suggests potential setting-specific causality in the relationship between BMI and subjective well-being, with robust differences observed between East Asians and Europeans when considering very similar outcomes. We highlight the importance of (a) considering potential non-linear relationships in causal analyses and (b) testing causal relationships in different populations, as the casual nature of relationships, especially relationships influenced by social processes, may be setting-specific.


Subject(s)
Body Mass Index , East Asian People , European People , Health Status , Adult , Female , Humans , Male , China
11.
Diabetologia ; 66(8): 1472-1480, 2023 08.
Article in English | MEDLINE | ID: mdl-37280435

ABSTRACT

AIMS/HYPOTHESIS: Determining how high BMI at different time points influences the risk of developing type 2 diabetes and affects insulin secretion and insulin sensitivity is critical. METHODS: By estimating childhood BMI in 441,761 individuals in the UK Biobank, we identified which genetic variants had larger effects on adulthood BMI than on childhood BMI, and vice versa. All genome-wide significant genetic variants were then used to separate the independent genetic effects of high childhood BMI from those of high adulthood BMI on the risk of type 2 diabetes and insulin-related phenotypes using Mendelian randomisation. We performed two-sample MR using external studies of type 2 diabetes, and oral and intravenous measures of insulin secretion and sensitivity. RESULTS: We found that a childhood BMI that was one standard deviation (1.97 kg/m2) higher than the mean, corrected for the independent genetic liability to adulthood BMI, was associated with a protective effect for seven measures of insulin sensitivity and secretion, including increased insulin sensitivity index (ß=0.15; 95% CI 0.067, 0.225; p=2.79×10-4) and reduced fasting glucose levels (ß=-0.053; 95% CI -0.089, -0.017; p=4.31×10-3). However, there was little to no evidence of a direct protective effect on type 2 diabetes (OR 0.94; 95% CI 0.85, 1.04; p=0.228) independently of genetic liability to adulthood BMI. CONCLUSIONS/INTERPRETATION: Our results provide evidence of the protective effect of higher childhood BMI on insulin secretion and sensitivity, which are crucial intermediate diabetes traits. However, we stress that our results should not currently lead to any change in public health or clinical practice, given the uncertainty regarding the biological pathway of these effects and the limitations of this type of study.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance/genetics , Body Mass Index , Phenotype , Insulin/genetics , Mendelian Randomization Analysis , Genome-Wide Association Study , Polymorphism, Single Nucleotide
12.
Eur J Epidemiol ; 38(7): 795-807, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37133737

ABSTRACT

Musculoskeletal conditions, including fractures, can have severe and long-lasting consequences. Higher body mass index in adulthood is widely acknowledged to be protective for most fracture sites. However, sources of bias induced by confounding factors may have distorted previous findings. Employing a lifecourse Mendelian randomisation (MR) approach by using genetic instruments to separate effects at different life stages, this investigation aims to explore how prepubertal and adult body size independently influence fracture risk in later life.Using data from a large prospective cohort, univariable and multivariable MR were conducted to simultaneously estimate the effects of age-specific genetic proxies for body size (n = 453,169) on fracture risk (n = 416,795). A two-step MR framework was additionally applied to elucidate potential mediators. Univariable and multivariable MR indicated strong evidence that higher body size in childhood reduced fracture risk (OR, 95% CI: 0.89, 0.82 to 0.96, P = 0.005 and 0.76, 0.69 to 0.85, P = 1 × 10- 6, respectively). Conversely, higher body size in adulthood increased fracture risk (OR, 95% CI: 1.08, 1.01 to 1.16, P = 0.023 and 1.26, 1.14 to 1.38, P = 2 × 10- 6, respectively). Two-step MR analyses suggested that the effect of higher body size in childhood on reduced fracture risk was mediated by its influence on higher estimated bone mineral density (eBMD) in adulthood.This investigation provides novel evidence that higher body size in childhood reduces fracture risk in later life through its influence on increased eBMD. From a public health perspective, this relationship is complex since obesity in adulthood remains a major risk factor for co-morbidities. Results additionally indicate that higher body size in adulthood is a risk factor for fractures. Protective effect estimates previously observed are likely attributed to childhood effects.


Subject(s)
Fractures, Bone , Adult , Humans , Prospective Studies , Fractures, Bone/epidemiology , Fractures, Bone/genetics , Risk Factors , Obesity , Mendelian Randomization Analysis , Genome-Wide Association Study , Age Factors
13.
Elife ; 122023 04 12.
Article in English | MEDLINE | ID: mdl-37042641

ABSTRACT

A recent World Health Organization report states that at least 40% of all cancer cases may be preventable, with smoking, alcohol consumption, and obesity identified as three of the most important modifiable lifestyle factors. Given the significant decline in smoking rates, particularly within developed countries, other potentially modifiable risk factors for head and neck cancer warrant investigation. Obesity and related metabolic disorders such as type 2 diabetes (T2D) and hypertension have been associated with head and neck cancer risk in multiple observational studies. However, adiposity has also been correlated with smoking, with bias, confounding or reverse causality possibly explaining these findings. To overcome the challenges of observational studies, we conducted two-sample Mendelian randomization (inverse variance weighted [IVW] method) using genetic variants which were robustly associated with adiposity, glycaemic and blood pressure traits in genome-wide association studies (GWAS). Outcome data were taken from the largest available GWAS of 6034 oral and oropharyngeal cases, with 6585 controls. We found limited evidence of a causal effect of genetically proxied body mass index (BMI; OR IVW = 0.89, 95% CI 0.72-1.09, p = 0.26 per 1 standard deviation in BMI [4.81kg/m2]) on oral and oropharyngeal cancer risk. Similarly, there was limited evidence for related traits including T2D and hypertension. Small effects cannot be excluded given the lack of power to detect them in currently available GWAS.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , Oropharyngeal Neoplasms , Humans , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Risk Factors , Oropharyngeal Neoplasms/epidemiology , Oropharyngeal Neoplasms/genetics , Obesity , Polymorphism, Single Nucleotide
14.
bioRxiv ; 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36798175

ABSTRACT

Findings from genome-wide association studies have facilitated the generation of genetic predictors for many common human phenotypes. Stratifying individuals misaligned to a genetic predictor based on common variants may be important for follow-up studies that aim to identify alternative causal factors. Using genome-wide imputed genetic data, we aimed to classify 158,951 unrelated individuals from the UK Biobank as either concordant or deviating from two well-measured phenotypes. We first applied our methods to standing height: our primary analysis classified 244 individuals (0.15%) as misaligned to their genetically predicted height. We show that these individuals are enriched for self-reporting being shorter or taller than average at age 10, diagnosed congenital malformations, and rare loss-of-function variants in genes previously catalogued as causal for growth disorders. Secondly, we apply our methods to LDL cholesterol. We classified 156 (0.12%) individuals as misaligned to their genetically predicted LDL cholesterol and show that these individuals were enriched for both clinically actionable cardiovascular risk factors and rare genetic variants in genes previously shown to be involved in metabolic processes. Individuals whose LDL-C was higher than expected based on the genetic predictor were also at higher risk of developing coronary artery disease and type-two diabetes, even after adjustment for measured LDL-C, BMI and age, suggesting upward deviation from genetically predicted LDL-C is indicative of generally poor health. Our results remained broadly consistent when performing sensitivity analysis based on a variety of parametric and non-parametric methods to define individuals deviating from polygenic expectation. Our analyses demonstrate the potential importance of quantitatively identifying individuals for further follow-up based on deviation from genetic predictions. Author Summary: Human genetics is becoming increasingly useful to help predict human traits across a population owing to findings from large-scale genetic association studies and advances in the power of genetic predictors. This provides an opportunity to potentially identify individuals that deviate from genetic predictions for a common phenotype under investigation. For example, an individual may be genetically predicted to be tall, but be shorter than expected. It is potentially important to identify individuals who deviate from genetic predictions as this can facilitate further follow-up to assess likely causes. Using 158,951 unrelated individuals from the UK Biobank, with height and LDL cholesterol, as exemplar traits, we demonstrate that approximately 0.15% & 0.12% of individuals deviate from their genetically predicted phenotypes respectively. We observed these individuals to be enriched for a range of rare clinical diagnoses, as well as rare genetic factors that may be causal. Our analyses also demonstrate several methods for detecting individuals who deviate from genetic predictions that can be applied to a range of continuous human phenotypes.

15.
medRxiv ; 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36798216

ABSTRACT

Determining how high body-mass index (BMI) at different time points influences the risk of developing type two diabetes (T2D), and affects insulin secretion and insulin sensitivity, is critical. By estimating childhood BMI in 441,761 individuals in the UK Biobank, we identified which genetic variants had larger effects on adulthood BMI than on childhood BMI, and vice-versa. All genome-wide significant genetic variants were then used to separate the independent genetic effects of high childhood BMI from high adulthood BMI on the risk of T2D and insulin related phenotypes using Mendelian randomisation and studies of T2D, and oral and intravenous measures of insulin secretion and sensitivity. We found that a 1.s.d. (= 1.97kg/m 2 ) higher childhood BMI, corrected for the independent genetic liability to adulthood BMI, was associated with a protective effect for seven measures of insulin sensitivity and secretion, including an increased insulin sensitivity index (ß = 0.15 [0.067, 0.225], p = 2.79×10 -4 ), and reduced fasting glucose (ß = -0.053 [-0.089, -0.017], p = 4.31×10 -3 ). There was however little to no evidence of a direct protective effect on T2D (OR = 0.94 [0.85 - 1.04], p = 0.228), independently of genetic liability to adulthood BMI. Our results thus cumulatively provide evidence of the protective effect of higher childhood BMI on insulin secretion and sensitivity, which are crucial intermediate diabetes traits. However, we stress that our results should not currently lead to any change in public health or clinical practice, given the uncertainty in biological pathway of these effects, and the limitations of this type of study. Research in Context: High BMI in adulthood is associated with higher risk of type two diabetes, coupled with lower insulin sensitivity and secretion.Richardson et al [2020] used genetics to show that high BMI in childhood does not appear to increase the risk of type diabetes independently from its effect on adult BMI.We asked: does high childhood BMI affect insulin related traits such as fasting glucose and insulin sensitivity, independently of adulthood BMI?We used genetics to show that high childhood BMI has a protective effect on seven insulin sensitivity and secretion traits, including fasting glucose and measures of insulin sensitivity and secretion, independently of adulthood BMI.Our work has the potential to turn conventional understanding on its head - high BMI in childhood improves insulin sensitivity (when adjusting for knock on effects to high adult BMI) and opens up important questions about plasticity in childhood and compensatory mechanisms.

16.
BMC Med ; 21(1): 37, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36726144

ABSTRACT

BACKGROUND: Extensive evidence links higher body mass index (BMI) to higher odds of depression in people of European ancestry. However, our understanding of the relationship across different settings and ancestries is limited. Here, we test the relationship between body composition and depression in people of East Asian ancestry. METHODS: Multiple Mendelian randomisation (MR) methods were used to test the relationship between (a) BMI and (b) waist-hip ratio (WHR) with depression. Firstly, we performed two-sample MR using genetic summary statistics from a recent genome-wide association study (GWAS) of depression (with 15,771 cases and 178,777 controls) in people of East Asian ancestry. We selected 838 single nucleotide polymorphisms (SNPs) correlated with BMI and 263 SNPs correlated with WHR as genetic instrumental variables to estimate the causal effect of BMI and WHR on depression using the inverse-variance weighted (IVW) method. We repeated these analyses stratifying by home location status: China versus UK or USA. Secondly, we performed one-sample MR in the China Kadoorie Biobank (CKB) in 100,377 participants. This allowed us to test the relationship separately in (a) males and females and (b) urban and rural dwellers. We also examined (c) the linearity of the BMI-depression relationship. RESULTS: Both MR analyses provided evidence that higher BMI was associated with lower odds of depression. For example, a genetically-instrumented 1-SD higher BMI in the CKB was associated with lower odds of depressive symptoms [OR: 0.77, 95% CI: 0.63, 0.95]. There was evidence of differences according to place of residence. Using the IVW method, higher BMI was associated with lower odds of depression in people of East Asian ancestry living in China but there was no evidence for an association in people of East Asian ancestry living in the USA or UK. Furthermore, higher genetic BMI was associated with differential effects in urban and rural dwellers within China. CONCLUSIONS: This study provides the first MR evidence for an inverse relationship between BMI and depression in people of East Asian ancestry. This contrasts with previous findings in European populations and therefore the public health response to obesity and depression is likely to need to differ based on sociocultural factors for example, ancestry and place of residence. This highlights the importance of setting-specific causality when using genetic causal inference approaches and data from diverse populations to test hypotheses. This is especially important when the relationship tested is not purely biological and may involve sociocultural factors.


Subject(s)
Body Composition , Depression , East Asian People , Genome-Wide Association Study , Female , Humans , Male , Body Composition/genetics , Body Mass Index , Depression/epidemiology , Depression/genetics , Mendelian Randomization Analysis , Obesity/genetics , Polymorphism, Single Nucleotide/genetics , China
18.
Hum Mol Genet ; 32(3): 496-505, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36048866

ABSTRACT

Prolyl hydroxylase (PHD) inhibitors are in clinical development for anaemia in chronic kidney disease. Epidemiological studies have reported conflicting results regarding safety of long-term therapeutic haemoglobin (Hgb) rises through PHD inhibition on risk of cardiovascular disease. Genetic variation in genes encoding PHDs can be used as partial proxies to investigate the potential effects of long-term Hgb rises. We used Mendelian randomization to investigate the effect of long-term Hgb level rises through genetically proxied PHD inhibition on coronary artery disease (CAD: 60 801 cases; 123 504 controls), myocardial infarction (MI: 42 561 cases; 123 504 controls) or stroke (40 585 cases; 406 111 controls). To further characterize long-term effects of Hgb level rises, we performed a phenome-wide association study (PheWAS) in up to 451 099 UK Biobank individuals. Genetically proxied therapeutic PHD inhibition, equivalent to a 1.00 g/dl increase in Hgb levels, was not associated (at P < 0.05) with increased odds of CAD; odd ratio (OR) [95% confidence intervals (CI)] = 1.06 (0.84, 1.35), MI [OR (95% CI) = 1.02 (0.79, 1.33)] or stroke [OR (95% CI) = 0.91 (0.66, 1.24)]. PheWAS revealed associations with blood related phenotypes consistent with EGLN's role, relevant kidney- and liver-related biomarkers like estimated glomerular filtration rate and microalbuminuria, and non-alcoholic fatty liver disease (Bonferroni-adjusted P < 5.42E-05) but these were not clinically meaningful. These findings suggest that long-term alterations in Hgb through PHD inhibition are unlikely to substantially increase cardiovascular disease risk; using large disease genome-wide association study data, we could exclude ORs of 1.35 for cardiovascular risk with a 1.00 g/dl increase in Hgb.


Subject(s)
Cardiovascular Diseases , Stroke , Humans , Cardiovascular Diseases/genetics , Genome-Wide Association Study , Risk Factors , Prolyl Hydroxylases/genetics , Genetic Predisposition to Disease , Heart Disease Risk Factors , Stroke/genetics , Mendelian Randomization Analysis
19.
Am J Hum Genet ; 109(11): 2018-2028, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36257325

ABSTRACT

The true prevalence and penetrance of monogenic disease variants are often not known because of clinical-referral ascertainment bias. We comprehensively assess the penetrance and prevalence of pathogenic variants in HNF1A, HNF4A, and GCK that account for >80% of monogenic diabetes. We analyzed clinical and genetic data from 1,742 clinically referred probands, 2,194 family members, clinically unselected individuals from a US health system-based cohort (n = 132,194), and a UK population-based cohort (n = 198,748). We show that one in 1,500 individuals harbor a pathogenic variant in one of these genes. The penetrance of diabetes for HNF1A and HNF4A pathogenic variants was substantially lower in the clinically unselected individuals compared to clinically referred probands and was dependent on the setting (32% in the population, 49% in the health system cohort, 86% in a family member, and 98% in probands for HNF1A). The relative risk of diabetes was similar across the clinically unselected cohorts highlighting the role of environment/other genetic factors. Surprisingly, the penetrance of pathogenic GCK variants was similar across all cohorts (89%-97%). We highlight that pathogenic variants in HNF1A, HNF4A, and GCK are not ultra-rare in the population. For HNF1A and HNF4A, we need to tailor genetic interpretation and counseling based on the setting in which a pathogenic monogenic variant was identified. GCK is an exception with near-complete penetrance in all settings. This along with the clinical implication of diagnosis makes it an excellent candidate for the American College of Medical Genetics secondary gene list.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Penetrance , Diabetes Mellitus, Type 2/diagnosis , Cohort Studies , Prevalence , Mutation , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 4/genetics
20.
Am J Hum Genet ; 109(9): 1638-1652, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055212

ABSTRACT

Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) are currently under clinical development for treating anemia in chronic kidney disease (CKD), but it is important to monitor their cardiovascular safety. Genetic variants can be used as predictors to help inform the potential risk of adverse effects associated with drug treatments. We therefore aimed to use human genetics to help assess the risk of adverse cardiovascular events associated with therapeutically altered EPO levels to help inform clinical trials studying the safety of HIF-PHIs. By performing a genome-wide association meta-analysis of EPO (n = 6,127), we identified a cis-EPO variant (rs1617640) lying in the EPO promoter region. We validated this variant as most likely causal in controlling EPO levels by using genetic and functional approaches, including single-base gene editing. Using this variant as a partial predictor for therapeutic modulation of EPO and large genome-wide association data in Mendelian randomization tests, we found no evidence (at p < 0.05) that genetically predicted long-term rises in endogenous EPO, equivalent to a 2.2-unit increase, increased risk of coronary artery disease (CAD, OR [95% CI] = 1.01 [0.93, 1.07]), myocardial infarction (MI, OR [95% CI] = 0.99 [0.87, 1.15]), or stroke (OR [95% CI] = 0.97 [0.87, 1.07]). We could exclude increased odds of 1.15 for cardiovascular disease for a 2.2-unit EPO increase. A combination of genetic and functional studies provides a powerful approach to investigate the potential therapeutic profile of EPO-increasing therapies for treating anemia in CKD.


Subject(s)
Anemia , Coronary Artery Disease , Myocardial Infarction , Renal Insufficiency, Chronic , Anemia/drug therapy , Anemia/genetics , Coronary Artery Disease/genetics , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Myocardial Infarction/genetics , Renal Insufficiency, Chronic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...