Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 195
Filter
1.
Mol Biol Cell ; 35(6): ar77, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38598296

ABSTRACT

In favorable conditions, eukaryotic cells proceed irreversibly through the cell division cycle (G1-S-G2-M) in order to produce two daughter cells with the same number and identity of chromosomes of their progenitor. The integrity of this process is maintained by "checkpoints" that hold a cell at particular transition points of the cycle until all requisite events are completed. The crucial functions of these checkpoints seem to depend on irreversible bistability of the underlying checkpoint control systems. Bistability of cell cycle transitions has been confirmed experimentally in frog egg extracts, budding yeast cells and mammalian cells. For fission yeast cells, a recent paper by Patterson et al. (2021) provides experimental evidence for an abrupt transition from G2 phase into mitosis, and we show that these data are consistent with a stochastic model of a bistable switch governing the G2/M checkpoint. Interestingly, our model suggests that their experimental data could also be explained by a reversible/sigmoidal switch, and stochastic simulations confirm this supposition. We propose a simple modification of their experimental protocol that could provide convincing evidence for (or against) bistability of the G2/M transition in fission yeast.


Subject(s)
Mitosis , Schizosaccharomyces , Schizosaccharomyces/metabolism , Mitosis/physiology , Cell Cycle/physiology , G2 Phase Cell Cycle Checkpoints , G2 Phase/physiology , Schizosaccharomyces pombe Proteins/metabolism
2.
J Clin Microbiol ; 62(3): e0010322, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38315007

ABSTRACT

The ongoing COVID-19 pandemic necessitates cost-effective, high-throughput, and timely whole-genome sequencing (WGS) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses for outbreak investigations, identifying variants of concern (VoC), characterizing vaccine breakthrough infections, and public health surveillance. In addition, the enormous demand for WGS on supply chains and the resulting shortages of laboratory supplies necessitated the use of low-reagent and low-consumable methods. Here, we report an optimized library preparation method (the BCCDC cutdown method) that can be used in a high-throughput scenario, where one technologist can perform 576 library preparations (6 plates of 96 samples) over the course of one 8-hour shift. The same protocol can also be used in a rapid turnaround time scenario, from primary samples (up to 96 samples) to loading on a sequencer in an 8-hour shift. This new method uses Freed et al.'s 1,200 bp primer sets (Biol Methods Protoc 5:bpaa014, 2020, https://doi.org/10.1093/biomethods/bpaa014) and a modified and condensed Illumina DNA Prep workflow (Illumina, CA, USA). Compared to the original protocol, the application of this new method using hundreds of clinical specimens demonstrated equivalent results to the full-length DNA Prep workflow at 45% of the cost, 15% of consumables required (such as pipet tips), 25% of manual hands-on time, and 15% of on-instrument time if performing on a liquid handler, with no compromise in sequence quality. Results demonstrate that this new method is a rapid, simple, cost-effective, and high-quality SARS-CoV-2 WGS protocol. IMPORTANCE: Sequencing has played an invaluable role in the response to the COVID-19 pandemic. Ongoing work in this area, however, demands optimization of laboratory workflow to increase sequencing capacity, improve turnaround time, and reduce cost without compromising sequence quality. This report describes an optimized DNA library preparation method for improved whole-genome sequencing of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogen. The workflow advantages summarized here include significant time, cost, and consumable savings, which suggest that this new method is an efficient, scalable, and pragmatic alternative for SARS-CoV-2 whole-genome sequencing.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cost-Benefit Analysis , Pandemics , Gene Library , DNA , High-Throughput Nucleotide Sequencing/methods
3.
J Cell Sci ; 137(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38206091

ABSTRACT

The mammalian cell cycle alternates between two phases - S-G2-M with high levels of A- and B-type cyclins (CycA and CycB, respectively) bound to cyclin-dependent kinases (CDKs), and G1 with persistent degradation of CycA and CycB by an activated anaphase promoting complex/cyclosome (APC/C) bound to Cdh1 (also known as FZR1 in mammals; denoted APC/C:Cdh1). Because CDKs phosphorylate and inactivate Cdh1, these two phases are mutually exclusive. This 'toggle switch' is flipped from G1 to S by cyclin-E bound to a CDK (CycE:CDK), which is not degraded by APC/C:Cdh1, and from M to G1 by Cdc20-bound APC/C (APC/C:Cdc20), which is not inactivated by CycA:CDK or CycB:CDK. After flipping the switch, cyclin E is degraded and APC/C:Cdc20 is inactivated. Combining mathematical modelling with single-cell timelapse imaging, we show that dysregulation of CycB:CDK disrupts strict alternation of the G1-S and M-G1 switches. Inhibition of CycB:CDK results in Cdc20-independent Cdh1 'endocycles', and sustained activity of CycB:CDK drives Cdh1-independent Cdc20 endocycles. Our model provides a mechanistic explanation for how whole-genome doubling can arise, a common event in tumorigenesis that can drive tumour evolution.


Subject(s)
Cell Cycle Proteins , Cyclins , Animals , Cell Cycle , Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinases/metabolism , Mitosis , Cdc20 Proteins/metabolism , Mammals/metabolism
4.
Proc Natl Acad Sci U S A ; 120(49): e2313224120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38015844

ABSTRACT

The decision to stop growing and mature into an adult is a critical point in development that determines adult body size, impacting multiple aspects of an adult's biology. In many animals, growth cessation is a consequence of hormone release that appears to be tied to the attainment of a particular body size or condition. Nevertheless, the size-sensing mechanism animals use to initiate hormone synthesis is poorly understood. Here, we develop a simple mathematical model of growth cessation in Drosophila melanogaster, which is ostensibly triggered by the attainment of a critical weight (CW) early in the last instar. Attainment of CW is correlated with the synthesis of the steroid hormone ecdysone, which causes a larva to stop growing, pupate, and metamorphose into the adult form. Our model suggests that, contrary to expectation, the size-sensing mechanism that initiates metamorphosis occurs before the larva reaches CW; that is, the critical-weight phenomenon is a downstream consequence of an earlier size-dependent developmental decision, not a decision point itself. Further, this size-sensing mechanism does not require a direct assessment of body size but emerges from the interactions between body size, ecdysone, and nutritional signaling. Because many aspects of our model are evolutionarily conserved among all animals, the model may provide a general framework for understanding how animals commit to maturing from their juvenile to adult form.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila melanogaster , Ecdysone , Body Size , Larva , Metamorphosis, Biological
5.
Cell Rep ; 42(10): 113128, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37742194

ABSTRACT

Neuronal swelling during cytotoxic edema is triggered by Na+ and Cl- entry and is Ca2+ independent. However, the causes of neuronal death during swelling are unknown. Here, we investigate the role of large-conductance Pannexin-1 (Panx1) channels in neuronal death during cytotoxic edema. Panx1 channel inhibitors reduce and delay neuronal death in swelling triggered by voltage-gated Na+ entry with veratridine. Neuronal swelling causes downstream production of reactive oxygen species (ROS) that opens Panx1 channels. We confirm that ROS activates Panx1 currents with whole-cell electrophysiology and find scavenging ROS is neuroprotective. Panx1 opening and subsequent ATP release attract microglial processes to contact swelling neurons. Depleting microglia using the CSF1 receptor antagonist PLX3397 or blocking P2Y12 receptors exacerbates neuronal death, suggesting that the Panx1-ATP-dependent microglia contacts are neuroprotective. We conclude that cytotoxic edema triggers oxidative stress in neurons that opens Panx1 to trigger death but also initiates neuroprotective feedback mediated by microglia contacts.


Subject(s)
Connexins , Microglia , Microglia/metabolism , Reactive Oxygen Species/metabolism , Connexins/metabolism , Cell Death , Adenosine Triphosphate/metabolism
6.
Emerg Infect Dis ; 29(10): 1999-2007, 2023 10.
Article in English | MEDLINE | ID: mdl-37640374

ABSTRACT

In British Columbia, Canada, initial growth of the SARS-CoV-2 Delta variant was slower than that reported in other jurisdictions. Delta became the dominant variant (>50% prevalence) within ≈7-13 weeks of first detection in regions within the United Kingdom and United States. In British Columbia, it remained at <10% of weekly incident COVID-19 cases for 13 weeks after first detection on March 21, 2021, eventually reaching dominance after 17 weeks. We describe the growth of Delta variant cases in British Columbia during March 1-June 30, 2021, and apply retrospective counterfactual modeling to examine factors for the initially low COVID-19 case rate after Delta introduction, such as vaccination coverage and nonpharmaceutical interventions. Growth of COVID-19 cases in the first 3 months after Delta emergence was likely limited in British Columbia because additional nonpharmaceutical interventions were implemented to reduce levels of contact at the end of March 2021, soon after variant emergence.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , British Columbia/epidemiology , SARS-CoV-2/genetics , Retrospective Studies , COVID-19/epidemiology , COVID-19/prevention & control
7.
Infect Genet Evol ; 113: 105484, 2023 09.
Article in English | MEDLINE | ID: mdl-37531976

ABSTRACT

OBJECTIVES: Clustering pathogen sequence data is a common practice in epidemiology to gain insights into the genetic diversity and evolutionary relationships among pathogens. We can find groups of cases with a shared transmission history and common origin, as well as identifying transmission hotspots. Motivated by the experience of clustering SARS-CoV-2 cases using whole genome sequence data during the COVID-19 pandemic to aid with public health investigation, we investigated how differences in epidemiology and sampling can influence the composition of clusters that are identified. METHODS: We performed genomic clustering on simulated SARS-CoV-2 outbreaks produced with different transmission rates and levels of genomic diversity, along with varying the proportion of cases sampled. RESULTS: In single outbreaks with a low transmission rate, decreasing the sampling fraction resulted in multiple, separate clusters being identified where intermediate cases in transmission chains are missed. Outbreaks simulated with a high transmission rate were more robust to changes in the sampling fraction and largely resulted in a single cluster that included all sampled outbreak cases. When considering multiple outbreaks in a sampled jurisdiction seeded by different introductions, low genomic diversity between introduced cases caused outbreaks to be merged into large clusters. If the transmission and sampling fraction, and diversity between introductions was low, a combination of the spurious break-up of outbreaks and the linking of closely related cases in different outbreaks resulted in clusters that may appear informative, but these did not reflect the true underlying population structure. Conversely, genomic clusters matched the true population structure when there was relatively high diversity between introductions and a high transmission rate. CONCLUSION: Differences in epidemiology and sampling can impact our ability to identify genomic clusters that describe the underlying population structure. These findings can help to guide recommendations for the use of pathogen clustering in public health investigations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Pandemics , Disease Outbreaks , Genomics , Cluster Analysis
8.
Biology (Basel) ; 12(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37372126

ABSTRACT

Large-scale protein regulatory networks, such as signal transduction systems, contain small-scale modules ('motifs') that carry out specific dynamical functions. Systematic characterization of the properties of small network motifs is therefore of great interest to molecular systems biologists. We simulate a generic model of three-node motifs in search of near-perfect adaptation, the property that a system responds transiently to a change in an environmental signal and then returns near-perfectly to its pre-signal state (even in the continued presence of the signal). Using an evolutionary algorithm, we search the parameter space of these generic motifs for network topologies that score well on a pre-defined measure of near-perfect adaptation. We find many high-scoring parameter sets across a variety of three-node topologies. Of all possibilities, the highest scoring topologies contain incoherent feed-forward loops (IFFLs), and these topologies are evolutionarily stable in the sense that, under 'macro-mutations' that alter the topology of a network, the IFFL motif is consistently maintained. Topologies that rely on negative feedback loops with buffering (NFLBs) are also high-scoring; however, they are not evolutionarily stable in the sense that, under macro-mutations, they tend to evolve an IFFL motif and may-or may not-lose the NFLB motif.

9.
iScience ; 26(4): 106513, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37128549

ABSTRACT

The crescent-shaped bacterium Caulobacter crescentus divides asymmetrically into a sessile (stalked) cell and a motile (flagellated) cell. This dimorphic cell division cycle is driven by the asymmetric appearance of scaffolding proteins at the cell's stalk and flagellum poles. The scaffolding proteins recruit enzyme complexes that phosphorylate and degrade a master transcription factor, CtrA, and the abundance and phosphorylation state of CtrA control the onset of DNA synthesis and the differentiation of stalked and flagellated cell types. In this study, we use a Turing-pattern mechanism to simulate the spatiotemporal dynamics of scaffolding proteins in Caulobacter and how they influence the abundance and intracellular distribution of CtrA∼P. Our mathematical model captures crucial features of wild-type and mutant strains and predicts the distributions of CtrA∼P and signaling proteins in mutant strains. Our model accounts for Caulobacter polar morphogenesis and shows how spatial localization and phosphosignaling cooperate to establish asymmetry during the cell cycle.

10.
Front Genet ; 14: 1138582, 2023.
Article in English | MEDLINE | ID: mdl-37051600

ABSTRACT

The ongoing SARS-CoV-2 pandemic demonstrates the utility of real-time sequence analysis in monitoring and surveillance of pathogens. However, cost-effective sequencing requires that samples be PCR amplified and multiplexed via barcoding onto a single flow cell, resulting in challenges with maximising and balancing coverage for each sample. To address this, we developed a real-time analysis pipeline to maximise flow cell performance and optimise sequencing time and costs for any amplicon based sequencing. We extended our nanopore analysis platform MinoTour to incorporate ARTIC network bioinformatics analysis pipelines. MinoTour predicts which samples will reach sufficient coverage for downstream analysis and runs the ARTIC networks Medaka pipeline once sufficient coverage has been reached. We show that stopping a viral sequencing run earlier, at the point that sufficient data has become available, has no negative effect on subsequent down-stream analysis. A separate tool, SwordFish, is used to automate adaptive sampling on Nanopore sequencers during the sequencing run. This enables normalisation of coverage both within (amplicons) and between samples (barcodes) on barcoded sequencing runs. We show that this process enriches under-represented samples and amplicons in a library as well as reducing the time taken to obtain complete genomes without affecting the consensus sequence.

11.
Proc Natl Acad Sci U S A ; 120(2): e2208787120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36598937

ABSTRACT

Wnt ligands are considered classical morphogens, for which the strength of the cellular response is proportional to the concentration of the ligand. Herein, we show an emergent property of bistability arising from feedback among the Wnt destruction complex proteins that target the key transcriptional co-activator ß-catenin for degradation. Using biochemical reconstitution, we identified positive feedback between the scaffold protein Axin and the kinase glycogen synthase kinase 3 (GSK3). Theoretical modeling of this feedback between Axin and GSK3 suggested that the activity of the destruction complex exhibits bistable behavior. We experimentally confirmed these predictions by demonstrating that cellular cytoplasmic ß-catenin concentrations exhibit an "all-or-none" response with sustained memory (hysteresis) of the signaling input. This bistable behavior was transformed into a graded response and memory was lost through inhibition of GSK3. These findings provide a mechanism for establishing decisive, switch-like cellular response and memory upon Wnt pathway stimulation.


Subject(s)
Axin Signaling Complex , beta Catenin , Axin Signaling Complex/metabolism , beta Catenin/metabolism , Axin Protein/genetics , Axin Protein/metabolism , Glycogen Synthase Kinase 3/metabolism , Feedback , Phosphorylation , Wnt Signaling Pathway/physiology
12.
Article in English | MEDLINE | ID: mdl-36674005

ABSTRACT

Throughout the COVID-19 pandemic, numerous non-human species were shown to be susceptible to natural infection by SARS-CoV-2, including farmed American mink. Once infected, American mink can transfer the virus from mink to human and mink to mink, resulting in a high rate of viral mutation. Therefore, outbreak surveillance on American mink farms is imperative for both mink and human health. Historically, disease surveillance on mink farms has consisted of a combination of mortality and live animal sampling; however, these methodologies have significant limitations. This study compared PCR testing of both deceased and live animal samples to environmental samples on an active outbreak premise, to determine the utility of environmental sampling. Environmental sampling mirrored trends in both deceased and live animal sampling in terms of percent positivity and appeared more sensitive in some low-prevalence instances. PCR CT values of environmental samples were significantly different from live animal samples' CT values and were consistently high (mean CT = 36.2), likely indicating a low amount of viral RNA in the samples. There is compelling evidence in favour of environmental sampling for the purpose of disease surveillance, specifically as an early warning tool for SARS-CoV-2; however, further work is needed to ultimately determine whether environmental samples are viable sources for molecular epidemiology investigations.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Mink , Pandemics , Polymerase Chain Reaction
13.
J Med Virol ; 95(1): e28423, 2023 01.
Article in English | MEDLINE | ID: mdl-36546412

ABSTRACT

The SARS-CoV-2 variant Omicron emerged in late 2021. In British Columbia (BC), Canada, and globally, three genetically distinct subvariants of Omicron, BA.1, BA.2, and BA.5, emerged and became dominant successively within an 8-month period. SARS-CoV-2 subvariants continue to circulate in the population, acquiring new mutations that have the potential to alter infectivity, immunity, and disease severity. Here, we report a propensity-matched severity analysis from residents of BC over the course of the Omicron wave, including 39,237 individuals infected with BA.1, BA.2, or BA.5 based on paired high-quality sequence data and linked to comprehensive clinical outcomes data between December 23, 2021 and August 31, 2022. Relative to BA.1, BA.2 cases were associated with a 15% and 28% lower risk of hospitalization and intensive care unit (ICU) admission (aHRhospital = 1.17; 95% confidence interval [CI] = 1.096-1.252; aHRICU = 1.368; 95% CI = 1.152-1.624), whereas BA.5 infections were associated with an 18% higher risk of hospitalization (aHRhospital = 1.18; 95% CI = 1.133-1.224) after accounting for age, sex, comorbidities, vaccination status, geography, and social determinants of health. Phylogenetic analysis revealed no specific subclades associated with more severe clinical outcomes for any Omicron subvariant. In summary, BA.1, BA.2, and BA.5 subvariants were associated with differences in clinical severity, emphasizing how variant-specific monitoring programs remain critical components of patient and population-level public health responses as the pandemic continues.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , British Columbia/epidemiology , SARS-CoV-2/genetics , Cohort Studies , Phylogeny , COVID-19/epidemiology
14.
Clin Infect Dis ; 76(3): e18-e25, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36041009

ABSTRACT

BACKGROUND: In late 2021, the Omicron severe acute respiratory syndrome coronavirus 2 variant emerged and rapidly replaced Delta as the dominant variant. The increased transmissibility of Omicron led to surges in case rates and hospitalizations; however, the true severity of the variant remained unclear. We aimed to provide robust estimates of Omicron severity relative to Delta. METHODS: This retrospective cohort study was conducted with data from the British Columbia COVID-19 Cohort, a large provincial surveillance platform with linkage to administrative datasets. To capture the time of cocirculation with Omicron and Delta, December 2021 was chosen as the study period. Whole-genome sequencing was used to determine Omicron and Delta variants. To assess the severity (hospitalization, intensive care unit [ICU] admission, length of stay), we conducted adjusted Cox proportional hazard models, weighted by inverse probability of treatment weights (IPTW). RESULTS: The cohort was composed of 13 128 individuals (7729 Omicron and 5399 Delta). There were 419 coronavirus disease 2019 hospitalizations, with 118 (22%) among people diagnosed with Omicron (crude rate = 1.5% Omicron, 5.6% Delta). In multivariable IPTW analysis, Omicron was associated with a 50% lower risk of hospitalization compared with Delta (adjusted hazard ratio [aHR] = 0.50, 95% confidence interval [CI] = 0.43 to 0.59), a 73% lower risk of ICU admission (aHR = 0.27, 95% CI = 0.19 to 0.38), and a 5-day shorter hospital stay (aß = -5.03, 95% CI = -8.01 to -2.05). CONCLUSIONS: Our analysis supports findings from other studies that have demonstrated lower risk of severe outcomes in Omicron-infected individuals relative to Delta.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , British Columbia/epidemiology , SARS-CoV-2/genetics , Retrospective Studies , COVID-19/epidemiology
15.
Sci Rep ; 12(1): 20302, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36434030

ABSTRACT

The cell division cycle is regulated by a complex network of interacting genes and proteins. The control system has been modeled in many ways, from qualitative Boolean switching-networks to quantitative differential equations and highly detailed stochastic simulations. Here we develop a continuous-time stochastic model using seven Boolean variables to represent the activities of major regulators of the budding yeast cell cycle plus one continuous variable representing cell growth. The Boolean variables are updated asynchronously by logical rules based on known biochemistry of the cell-cycle control system using Gillespie's stochastic simulation algorithm. Time and cell size are updated continuously. By simulating a population of yeast cells, we calculate statistical properties of cell cycle progression that can be compared directly to experimental measurements. Perturbations of the normal sequence of events indicate that the cell cycle is 91% robust to random 'flips' of the Boolean variables, but 9% of the perturbations induce lethal mistakes in cell cycle progression. This simple, hybrid Boolean model gives a good account of the growth and division of budding yeast cells, suggesting that this modeling approach may be as accurate as detailed reaction-kinetic modeling with considerably less demands on estimating rate constants.


Subject(s)
Saccharomycetales , Models, Biological , Cell Cycle , Cell Division , Cell Cycle Checkpoints
16.
BMC Genomics ; 23(1): 710, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36258173

ABSTRACT

BACKGROUND: The COVID-19 pandemic remains a global public health concern. Advances in sequencing technologies has allowed for high numbers of SARS-CoV-2 whole genome sequence (WGS) data and rapid sharing of sequences through global repositories to enable almost real-time genomic analysis of the pathogen. WGS data has been used previously to group genetically similar viral pathogens to reveal evidence of transmission, including methods that identify distinct clusters on a phylogenetic tree. Identifying clusters of linked cases can aid in the regional surveillance and management of the disease. In this study, we present a novel method for producing stable genomic clusters of SARS-CoV-2 cases, cov2clusters, and compare the accuracy and stability of our approach to previous methods used for phylogenetic clustering using real-world SARS-CoV-2 sequence data obtained from British Columbia, Canada. RESULTS: We found that cov2clusters produced more stable clusters than previously used phylogenetic clustering methods when adding sequence data through time, mimicking an increase in sequence data through the pandemic. Our method also showed high accuracy when predicting epidemiologically informed clusters from sequence data. CONCLUSIONS: Our new approach allows for the identification of stable clusters of SARS-CoV-2 from WGS data. Producing high-resolution SARS-CoV-2 clusters from sequence data alone can a challenge and, where possible, both genomic and epidemiological data should be used in combination.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , COVID-19/epidemiology , Phylogeny , Genome, Viral , Genomics , Cluster Analysis
17.
Chaos ; 32(9): 093117, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36182391

ABSTRACT

Shoot apical meristems (SAMs) give rise to all above-ground tissues of a plant. Expansion of meristematic tissue is derived from the growth and division of stem cells that reside in a central zone of the SAM. This reservoir of stem cells is maintained by expression of a transcription factor WUSCHEL that is responsible for the development of stem cells in the central zone. WUSCHEL expression is self-activating and downregulated by a signaling pathway initiated by CLAVATA proteins, which are upregulated by WUSCHEL. This classic activator-inhibitor network can generate localized patterns of WUSCHEL activity by a Turing instability provided certain constraints on reaction rates and diffusion constants of WUSCHEL and CLAVATA are satisfied, and most existing mathematical models of nucleation and confinement of stem cells in the SAM rely on Turing's mechanism. However, Turing patterns have certain properties that are inconsistent with observed patterns of stem cell differentiation in the SAM. As an alternative mechanism, we propose a model for stem cell confinement based on a bistable-switch in WUSCHEL-CLAVATA interactions. We study the bistable-switch mechanism for pattern formation in a spatially continuous domain and in a discrete cellularized tissue in the presence of a non-uniform field of a rapidly diffusing hormone. By comparing domain formation by Turing and bistable-switch mechanisms in these contexts, we show that bistable switching provides a superior account of nucleation and confinement of the stem cell domain under reasonable assumptions on reaction rates and diffusion constants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Hormones/metabolism , Meristem/metabolism , Stem Cells/metabolism , Transcription Factors/metabolism
18.
Front Public Health ; 10: 915363, 2022.
Article in English | MEDLINE | ID: mdl-35859775

ABSTRACT

Background: COVID-19 vaccination is a key public health measure in the pandemic response. The rapid evolution of SARS-CoV-2 variants introduce new groups of spike protein mutations. These new mutations are thought to aid in the evasion of vaccine-induced immunity and render vaccines less effective. However, not all spike mutations contribute equally to vaccine escape. Previous studies associate mutations with vaccine breakthrough infections (BTI), but information at the population level remains scarce. We aimed to identify spike mutations associated with SARS-CoV-2 vaccine BTI in a community setting during the emergence and predominance of the Delta-variant. Methods: This case-control study used both genomic, and epidemiological data from a provincial COVID-19 surveillance program. Analyses were stratified into two periods approximating the emergence and predominance of the Delta-variant, and restricted to primary SARS-CoV-2 infections from either unvaccinated individuals, or those infected ≥14 days after their second vaccination dose in a community setting. Each sample's spike mutations were concatenated into a unique spike mutation profile (SMP). Penalized logistic regression was used to identify spike mutations and SMPs associated with SARS-CoV-2 vaccine BTI in both time periods. Results and Discussion: This study reports population level relative risk estimates, between 2 and 4-folds, of spike mutation profiles associated with BTI during the emergence and predominance of the Delta-variant, which comprised 19,624 and 17,331 observations, respectively. The identified mutations cover multiple spike domains including the N-terminal domain (NTD), receptor binding domain (RBD), S1/S2 cleavage region, fusion peptide and heptad regions. Mutations in these different regions imply various mechanisms contribute to vaccine escape. Our profiling method identifies naturally occurring spike mutations associated with BTI, and can be applied to emerging SARS-CoV-2 variants with novel groups of spike mutations.


Subject(s)
COVID-19 , British Columbia , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
19.
Interface Focus ; 12(4): 20210075, 2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35860005

ABSTRACT

Cell growth, DNA replication, mitosis and division are the fundamental processes by which life is passed on from one generation of eukaryotic cells to the next. The eukaryotic cell cycle is intrinsically a periodic process but not so much a 'clock' as a 'copy machine', making new daughter cells as warranted. Cells growing under ideal conditions divide with clock-like regularity; however, if they are challenged with DNA-damaging agents or mitotic spindle disrupters, they will not progress to the next stage of the cycle until the damage is repaired. These 'decisions' (to exit and re-enter the cell cycle) are essential to maintain the integrity of the genome from generation to generation. A crucial challenge for molecular cell biologists in the 1990s was to unravel the genetic and biochemical mechanisms of cell cycle control in eukaryotes. Central to this effort were biochemical studies of the clock-like regulation of 'mitosis promoting factor' during synchronous mitotic cycles of fertilized frog eggs and genetic studies of the switch-like regulation of 'cyclin-dependent kinases' in yeast cells. In this review, we uncover some secrets of cell cycle regulation by mathematical modelling of increasingly more complex molecular regulatory networks of cell cycle 'clocks' and 'switches'.

20.
Mol Biol Cell ; 33(10): br16, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35767360

ABSTRACT

During mitosis, unattached kinetochores in a dividing cell activate the spindle assembly checkpoint (SAC) and delay anaphase onset by generating the anaphase-inhibitory mitotic checkpoint complex (MCC). These kinetochores generate the MCC by recruiting its constituent proteins, including BubR1. In principle, BubR1 recruitment to signaling kinetochores should increase its local concentration and promote MCC formation. However, in human cells BubR1 is mainly thought to sensitize the SAC to silencing. Whether BubR1 localization to signaling kinetochores by itself enhances SAC signaling remains unknown. Therefore, we used ectopic SAC activation (eSAC) systems to isolate two molecules that recruit BubR1 to the kinetochore, the checkpoint protein Bub1 and the KI and MELT motifs in the kinetochore protein KNL1, and observed their contribution to eSAC signaling. Our quantitative analyses and mathematical modeling show that Bub1-mediated BubR1 recruitment to the human kinetochore promotes SAC signaling and highlight BubR1's dual role of strengthening the SAC directly and silencing it indirectly.


Subject(s)
Kinetochores , M Phase Cell Cycle Checkpoints , Cell Cycle Checkpoints , Cell Cycle Proteins/metabolism , Humans , Kinetochores/metabolism , Mitosis , Protein Serine-Threonine Kinases , Signal Transduction/physiology , Spindle Apparatus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...