Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(18): 7985-7995, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38650487

ABSTRACT

Novel temperature-sensitive luminescent materials, Ba2Gd2Ge4O13 doped with Bi3+, Bi3+/Sm3+ or Bi3+/Eu3+ ions, have been prepared using a conventional solid-state reaction technique. The XRPD study has verified that all the synthesized germanates crystallize in the monoclinic system (space group C2/c, Z = 4). The crystal lattice of the compounds consists of zigzag chains of edge-sharing Me2O7 (Me = Bi3+, Eu3+ or Sm3+) dimers, [Ge4O13] units, and ten-coordinated Ba atoms. Under UV excitation the powders exhibit the luminescence corresponding to the 3P1 → 1S0 (310-550 nm) transition in Bi3+ and 4G5/2 → 6HJ (550-730 nm) in Sm3+ or 5D0 → 7FJ (570-720 nm) transitions in Eu3+ ions. Heating of Ba2Gd1.94Bi0.01Sm0.05Ge4O13 and Ba2Gd1.89Bi0.01Eu0.1Ge4O13 phosphors leads to an irregular decrease in the intensity of the main emission lines. It has been found that the fluorescence intensity ratio between a wide band in the 310-530 nm region and peaks at longer wavelengths may be successfully used as a temperature-dependent characteristic. Absolute/relative sensitivity values for Ba2Gd1.94Bi0.01Sm0.05Ge4O13 and Ba2Gd1.89Bi0.01Eu0.1Ge4O13 germanates reach 0.19% K-1/0.80% K-1 and 2.21% K-1/0.58% K-1, respectively. The above parameters indicate that Ba2Gd2Ge4O13:Bi3+/Sm3+ or Bi3+/Eu3+ samples can be used as potential luminescent materials for non-contact temperature measurement.

2.
Dalton Trans ; 52(22): 7482-7494, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37194704

ABSTRACT

A new series of BaRE6(Ge2O7)2(Ge3O10) (RE = Tm, Yb, Lu) germanates and activated phases BaYb6(Ge2O7)2(Ge3O10):xTm3+ and BaLu6(Ge2O7)2(Ge3O10):12yYb3+,yTm3+ have been prepared using a solid-state reaction. An XRPD study has revealed that the compounds crystallize in the monoclinic system (space group P21/m, Z = 2). The crystal lattice consists of zigzag chains of edge-sharing distorted REO6 octahedra, bowed trigermanate [Ge3O10] units, [Ge2O7] groups, and eight-coordinated Ba atoms. The density functional theory calculations have confirmed a high thermodynamic stability of the synthesized solid solutions. According to the results of vibrational spectroscopy studies and diffuse reflectance measurements, the BaRE6(Ge2O7)2(Ge3O10) germanates are promising compounds for the creation of efficient lanthanide ion activated phosphors. Under 980 nm laser diode excitation, the BaYb6(Ge2O7)2(Ge3O10):xTm3+ and BaLu6(Ge2O7)2(Ge3O10):12yYb3+,yTm3+ samples exhibit upconversion luminescence corresponding to the characteristic 1G4 → 3H6 (455-500 nm), 1G4 → 3F4 (645-673 nm) and 3H4 → 3H6 (750-850 nm) transitions in Tm3+ ions. Heating of the BaLu6(Ge2O7)2(Ge3O10):12yYb3+,yTm3+ phosphor with the optimal composition up to 498 K leads to the enhancement of a broad band at 673-730 nm, caused by 3F2,3 → 3H6 transitions. It has been revealed that the fluorescence intensity ratio between this band and the band at 750-850 nm may be used for temperature sensing. The absolute and relative sensitivities in the studied temperature range reach 0.021% K-1 and 1.94% K-1, respectively.

3.
Water Environ Res ; 94(12): e10827, 2022.
Article in English | MEDLINE | ID: mdl-36514831

ABSTRACT

Removal of heavy metal ions, in particular, divalent nickel ions from natural and wastewater, is of great importance for the environment. Nickel (II) ions are very toxic and provoke many diseases. The purpose of this work was to study the possibility of removing toxic nickel (II) ions from polluted water using an iron (III) chloride (FeCl3) coagulant. It is shown that the removal of nickel ions from aqueous solution by iron (III) hydroxide precipitate formed during the coagulation process at pH 7 and 8 is described with satisfactory accuracy by the classical adsorption isotherms of Freundlich, Langmuir, and Dubinin-Radushkevich. The studies performed with the use of X-ray powder diffraction and thermal analyses, IR, Raman, and Mössbauer spectroscopy have shown that the uptake of nickel ions by iron (III) hydroxide precipitate is due to simple physical adsorption and is not accompanied by the formation of mixed iron and nickel compounds. No alloying of the formed iron (III) hydroxide precipitate with nickel ions takes place either. The formed iron (III) hydroxide precipitate is a two-line ferrihydrite having the gross formula Fe2 O3 × 3H2 O. Its sorption capacity for nickel ions is almost an order of magnitude higher than that of some mineral and carbon sorbents, and at pH 7 and 8, it is 60.5 and 141.9 mg/g, respectively. PRACTITIONER POINTS: Coagulant FeCl3 cleans contaminated solutions from Ni(II) ions. Iron (III) hydroxide precipitated at pH 7 and 8 is a two-line ferrihydrite Fe2 O3  × 3H2 O. Removing of Ni(II) ions is described by classical adsorption isotherms. The most complete removal of Ni(II) ions occurs at pH = 8.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Nickel/chemistry , Chlorides , Kinetics , Temperature , Ferric Compounds/chemistry , Adsorption , Ions , Iron , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry
4.
ACS Omega ; 7(45): 41581-41585, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36406529

ABSTRACT

Aza-pinacol coupling of N-benzyl-1-phenylmethanimine using Zn dust affords a mixture of R,S- or R,R-diastereomers in a 1:1 ratio. The R,S-diastereomer is solid with an m.p. of 135 °C, while the R,R-diastereomer is liquid at room temperature. The configuration of stereocenters was determined by combining X-ray powder diffraction and density functional theory (DFT) modeling.

5.
Dalton Trans ; 50(31): 10935-10946, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34318846

ABSTRACT

A new series of Ba2RE2Ge4O13 (RE = Pr, Nd, Gd, Dy) germanates and Ba2Gd2-xEuxGe4O13 (x = 0.1-0.8) solid solutions have been synthesized using the solid-state reaction technique and characterized by X-ray powder diffraction. All compounds crystallize in the monoclinic system, space group C2/c, Z = 4. The crystal lattice consists of RE2O12 dimers, zigzag C2-symmetric [Ge4O13]10- tetramers, and ten-coordinated Ba atoms located in voids between polyhedra. The density-functional theory (DFT) calculations performed on a rich set of Ba2RE2Ge4O13 compounds have confirmed the high thermodynamic stability of monoclinic modification. Under ultraviolet (UV) light excitation Ba2Gd2-xEuxGe4O13 phosphors exhibit an orange-red emission corresponding to the characteristic f-f transitions in Eu3+ ions. The highest intensity of lines at 580 nm (5D0→7F0), 582-602 nm (5D0→7F1), 602-640 nm (5D0→7F2), 648-660 nm (5D0→7F3), and 680-715 nm (5D0→7F4) is observed for the samples with x = 0.4-0.6. The possibility of their application has been assessed by studying their color characteristics, quantum efficiency, and thermal stability. The obtained data indicate that Ba2Gd2-xEuxGe4O13 solids can be considered as promising materials for UV-excited phosphor-converted light-emitting diodes (LEDs) if an aluminum nitride substrate (λex = 255 nm) is used as a semiconductor chip.

6.
Angew Chem Int Ed Engl ; 59(35): 15061-15068, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32412175

ABSTRACT

Polymeric carbon nitride materials have been used in numerous light-to-energy conversion applications ranging from photocatalysis to optoelectronics. For a new application and modelling, we first refined the crystal structure of potassium poly(heptazine imide) (K-PHI)-a benchmark carbon nitride material in photocatalysis-by means of X-ray powder diffraction and transmission electron microscopy. Using the crystal structure of K-PHI, periodic DFT calculations were performed to calculate the density-of-states (DOS) and localize intra band states (IBS). IBS were found to be responsible for the enhanced K-PHI absorption in the near IR region, to serve as electron traps, and to be useful in energy transfer reactions. Once excited with visible light, carbon nitrides, in addition to the direct recombination, can also undergo singlet-triplet intersystem crossing. We utilized the K-PHI centered triplet excited states to trigger a cascade of energy transfer reactions and, in turn, to sensitize, for example, singlet oxygen (1 O2 ) as a starting point to synthesis up to 25 different N-rich heterocycles.

7.
Dalton Trans ; 47(39): 14041-14051, 2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30232497

ABSTRACT

The apatite-like NaLa9(GeO4)6O2:Nd3+,Ho3+ phosphor is prepared using the solid-state method. Rietveld refinement of high-resolution time-of-flight neutron powder diffraction measurements indicate that this compound crystallizes in the hexagonal system with space group P63/m, Z = 1 and unit cell parameters a = 9.88903(6) Å, c = 7.25602(5) Å, V = 614.521(7) Å3 at room temperature. The 4f sites are statistically occupied by La, Nd and Na, while 6h sites are occupied by La and Nd. Luminescence in the near- and middle-IR range caused by the transitions in neodymium and holmium ions is excited under 808 nm laser diode radiation. The highest emission intensity in NaLa9-x-yNdxHoy(GeO4)6O2 is attained at trace amounts of holmium, and it decreases sharply when y increases to 0.01. The IR phosphors have a good thermal stability and exhibit a very weak upconversion emission in the red spectral range upon 808 nm excitation. A scheme of excitation and emission pathways involving ground/excited state absorption, energy transfer, cross-relaxation, nonradiative multiphonon relaxation processes in Nd3+ and Ho3+ ions has been proposed. The data analysis indicates that Nd3+ ions serve as sensitizers for Ho3+ ions in these compounds, stimulating intense 2.1 µm and 2.7 µm emissions. These apatite-related germanate phosphors are promising materials for near- and middle-infrared solid-state lighting applications.

8.
Inorg Chem ; 56(11): 6251-6263, 2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28520414

ABSTRACT

We investigated the structural, vibrational, magnetic, and electronic properties of the recently synthesized CaCo3V4O12 double perovskite with the high-spin (HS) Co2+ ions in a square-planar oxygen coordination at extreme conditions of high pressures and low temperatures. The single-crystal X-ray diffraction and Raman spectroscopy studies up to 60 GPa showed a conservation of its cubic crystal structure but indicated a crossover near 30 GPa. Above 30 GPa, we observed both an abnormally high "compressibility" of the Co-O bonds in the square-planar oxygen coordination and a huge anisotropic displacement of HS-Co2+ ions in the direction perpendicular to the oxygen planes. Although this effect is reminiscent of a continuous HS → LS transformation of the Co2+ ions, it did not result in the anticipated shrinkage of the cell volume because of a certain "stiffing" of the bonds of the Ca and V cations. We verified that the oxidation states of all the cations did not change across this crossover, and hence, no charge-transfer effects were involved. Consequently, we proposed that CaCo3V4O12 could undergo a phase transition at which the large HS-Co2+ ions were pushed out of the oxygen planes because of lattice compression. The antiferromagnetic transition in CaCo3V4O12 at 100 K was investigated by neutron powder diffraction at ambient pressure. We established that the magnetic moments of the Co2+ ions were aligned along one of the cubic axes, and the magnetic structure had a 2-fold periodicity along this axis, compared to the crystallographic one.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 180: 105-109, 2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28282561

ABSTRACT

Simultaneous emission lines around 1.05µm, 1.3µm, 1.8µm, 2.1µm and 2.7µm have been observed in Li7La3-xNdxHf2O12:Ho3+ (x=0.00-0.15) under 808nm laser diode excitation. Near-infrared luminescence due to holmium ions with residual concentration in the Li7La3Hf2O12 host has been studied. The intensity of 2.1 and 2.7µm lines associated with 5I7→5I8 and 5I6→5I7 transitions in Ho3+ depends on the neodymium codopant concentration. This result indicates that Nd3+ ions can be potentially used as sensitizers for Ho3+ ions to stimulate the intense near-infrared emission in this system. Possible energy transfer mechanisms between lanthanide ions have been briefly discussed.

10.
Dalton Trans ; 43(7): 2755-63, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24343584

ABSTRACT

Two new solid MO(OH)2 (M = Zr, Hf) oxyhydroxides have been synthesised by an ion-exchange reaction from Li2MO3 (M = Zr, Hf) precursors obtained by a citrate combustion technique. The crystal structure of the oxyhydroxides has been solved by direct methods and refined using Rietveld full profile fitting based on X-ray powder diffraction data. Both oxyhydroxides crystallize in a P2(1)/c monoclinic unit cell and have a structure resembling that of the related salts. Detailed characterisation of the fine-structure features and chemical bonding in precursors and oxyhydroxide powders has been performed using vibrational spectroscopy, nuclear magnetic resonance spectroscopy, scanning electron microscopy, pair distribution function analysis and quantum-chemical modelling.

11.
Inorg Chem ; 52(20): 11703-10, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24083336

ABSTRACT

A new perovskite, CaCo(2+)3V(4+)4O12, has been synthesized at high-pressure and high-temperature (HP-HT) conditions. The properties of this perovskite were examined by a range of techniques. CaCo3V4O12 was found to adopt a double-perovskite cubic lattice [a = 7.3428(6) Å] with Im3 symmetry. We have established that this new perovskite is stable at ambient conditions, and its oxidation and/or decomposition at ambient pressure begins above 500 °C. It undergoes an abrupt antiferromagnetic transition around 98 K. Electrical resistivity data suggest semimetallic conductivity in the temperature range of 1.6-370 K. We have established that the Co(2+) ions in CaCo3V4O12 are in the high-spin state with a sizable orbital moment, even though their square-planar oxygen coordination could be more suitable for the low-spin state, which is prone to Jahn-Teller distortion. Electrical resistivity curves also exhibit a distinct steplike feature around 100 K. CaCo3V4O12 is a first example of perovskite in which the sites A' are fully occupied by Co(2+) ions, and hence its synthesis opens the door to a new class of double perovskites, ACo3B4O12, that may be derived by chemical substitution of the A sublattice by lanthanides, sodium, strontium, and bismuth and by other elements and/or of the B sublattice by some other transition metals.

12.
Dalton Trans ; 42(4): 1057-64, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23111616

ABSTRACT

The crystal structure of K(2)CaV(2)O(7) prepared by a conventional solid-state reaction has been solved by a direct method and refined using Rietveld full profile fitting based on X-ray powder diffraction data. This compound crystallises in the triclinic space group (P1, Z = 2) with unit cell constants a = 7.1577(1) Å, b = 10.5104(2) Å, c = 5.8187(1) Å, α = 106.3368(9)°, ß = 106.235(1)°, γ = 71.1375(9)°. The structure can be described as infinite undulating CaV(2)O(7)(2-) layers parallel to the ac plane, which consist of pairs of edge-sharing CaO(6) octahedra connected to each other through V(2)O(7) pyrogroups. The potassium atoms are positioned in two sites between the layers, with a distorted IX-fold coordination of oxygen atoms. The chemical composition obtained from the structural solution was confirmed by energy-dispersive X-ray analysis. The stability of compounds in the family of alkali metal calcium pyrovanadates is discussed based on an analysis of the correlation between anion and cation sizes and theoretical first-principles calculations.

13.
Dalton Trans ; 39(35): 8168-76, 2010 Sep 21.
Article in English | MEDLINE | ID: mdl-20697660

ABSTRACT

Crystal structures of TiO(OH)(2) and Li(2)TiO(3) have been studied in detail and refined using X-ray powder diffraction data. Both compounds possess a high concentration of defects in the structure. The crystal structure of the Li(2)TiO(3) salt obtained at 700 degrees C reveals stacking faults of LiTi(2) metal layers, which leads to the appearance of short-range order in three possible space groups: C2/c, C2/m, P3(1)12. The possibility to stabilise this imperfect state increases the mobility of the Li(+) ions in the structure and allows the complete exchange of lithium by hydrogen in acid water solutions with formation of TiO(OH)(2). The crystal structure of TiO(OH)(2) belongs to the layered double hydroxide structure type with the 3R(1) sequence of oxygen layers and can be described as a stacking of charge-neutral metal oxyhydroxide slabs [(OH)(2)OTi(2)O(OH)(2)]. TiO(OH)(2) is the first layered double hydroxide structure formed by a cation with oxidation state +4 only.

SELECTION OF CITATIONS
SEARCH DETAIL
...