Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(5): 114162, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38678558

ABSTRACT

Zebrafish have a lifelong cardiac regenerative ability after damage, whereas mammals lose this capacity during early postnatal development. This study investigated whether the declining expression of growth factors during postnatal mammalian development contributes to the decrease of cardiomyocyte regenerative potential. Besides confirming the proliferative ability of neuregulin 1 (NRG1), interleukin (IL)1b, receptor activator of nuclear factor kappa-Β ligand (RANKL), insulin growth factor (IGF)2, and IL6, we identified other potential pro-regenerative factors, with BMP7 exhibiting the most pronounced efficacy. Bmp7 knockdown in neonatal mouse cardiomyocytes and loss-of-function in adult zebrafish during cardiac regeneration reduced cardiomyocyte proliferation, indicating that Bmp7 is crucial in the regenerative stages of mouse and zebrafish hearts. Conversely, bmp7 overexpression in regenerating zebrafish or administration at post-mitotic juvenile and adult mouse stages, in vitro and in vivo following myocardial infarction, enhanced cardiomyocyte cycling. Mechanistically, BMP7 stimulated proliferation through BMPR1A/ACVR1 and ACVR2A/BMPR2 receptors and downstream SMAD5, ERK, and AKT signaling. Overall, BMP7 administration is a promising strategy for heart regeneration.


Subject(s)
Bone Morphogenetic Protein 7 , Cell Proliferation , Myocytes, Cardiac , Regeneration , Zebrafish , Animals , Zebrafish/metabolism , Myocytes, Cardiac/metabolism , Bone Morphogenetic Protein 7/metabolism , Bone Morphogenetic Protein 7/genetics , Mice , Signal Transduction , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Neuregulin-1/metabolism , Neuregulin-1/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Protein Receptors, Type I/genetics , Mice, Inbred C57BL , Smad5 Protein/metabolism
3.
Nat Cardiovasc Res ; 2(4): 383-398, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37974970

ABSTRACT

Cardiomyocyte proliferation and dedifferentiation have fueled the field of regenerative cardiology in recent years, whereas the reverse process of redifferentiation remains largely unexplored. Redifferentiation is characterized by the restoration of function lost during dedifferentiation. Previously, we showed that ERBB2-mediated heart regeneration has these two distinct phases: transient dedifferentiation and redifferentiation. Here we survey the temporal transcriptomic and proteomic landscape of dedifferentiation-redifferentiation in adult mouse hearts and reveal that well-characterized dedifferentiation features largely return to normal, although elements of residual dedifferentiation remain, even after the contractile function is restored. These hearts appear rejuvenated and show robust resistance to ischemic injury, even 5 months after redifferentiation initiation. Cardiomyocyte redifferentiation is driven by negative feedback signaling and requires LATS1/2 Hippo pathway activity. Our data reveal the importance of cardiomyocyte redifferentiation in functional restoration during regeneration but also protection against future insult, in what could lead to a potential prophylactic treatment against ischemic heart disease for at-risk patients.

4.
Nat Commun ; 14(1): 5810, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726308

ABSTRACT

The tumor microenvironment (TME) is comprised of non-malignant cells that interact with each other and with cancer cells, critically impacting cancer biology. The TME is complex, and understanding it requires simplifying approaches. Here we provide an experimental-mathematical approach to decompose the TME into small circuits of interacting cell types. We find, using female breast cancer single-cell-RNA-sequencing data, a hierarchical network of interactions, with cancer-associated fibroblasts (CAFs) at the top secreting factors primarily to tumor-associated macrophages (TAMs). This network is composed of repeating circuit motifs. We isolate the strongest two-cell circuit motif by culturing fibroblasts and macrophages in-vitro, and analyze their dynamics and transcriptomes. This isolated circuit recapitulates the hierarchy of in-vivo interactions, and enables testing the effect of ligand-receptor interactions on cell dynamics and function, as we demonstrate by identifying a mediator of CAF-TAM interactions - RARRES2, and its receptor CMKLR1. Thus, the complexity of the TME may be simplified by identifying small circuits, facilitating the development of strategies to modulate the TME.


Subject(s)
Cancer-Associated Fibroblasts , Tumor Microenvironment , Female , Humans , Fibroblasts , Biological Transport , Cell Communication
5.
Science ; 380(6646): 758-764, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37200435

ABSTRACT

Zebrafish hearts can regenerate by replacing damaged tissue with new cardiomyocytes. Although the steps leading up to the proliferation of surviving cardiomyocytes have been extensively studied, little is known about the mechanisms that control proliferation and redifferentiation to a mature state. We found that the cardiac dyad, a structure that regulates calcium handling and excitation-contraction coupling, played a key role in the redifferentiation process. A component of the cardiac dyad called leucine-rich repeat-containing 10 (Lrrc10) acted as a negative regulator of proliferation, prevented cardiomegaly, and induced redifferentiation. We found that its function was conserved in mammalian cardiomyocytes. This study highlights the importance of the underlying mechanisms required for heart regeneration and their application to the generation of fully functional cardiomyocytes.


Subject(s)
Calcium , Heart , Myocytes, Cardiac , Regeneration , Sarcomeres , Zebrafish , Animals , Calcium/physiology , Cell Proliferation , Heart/physiology , Myocytes, Cardiac/physiology , Sarcomeres/physiology , Zebrafish/physiology
6.
Cell Stem Cell ; 30(1): 96-111.e6, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36516837

ABSTRACT

The efficacy and safety of gene-therapy strategies for indications like tissue damage hinge on precision; yet, current methods afford little spatial or temporal control of payload delivery. Here, we find that tissue-regeneration enhancer elements (TREEs) isolated from zebrafish can direct targeted, injury-associated gene expression from viral DNA vectors delivered systemically in small and large adult mammalian species. When employed in combination with CRISPR-based epigenome editing tools in mice, zebrafish TREEs stimulated or repressed the expression of endogenous genes after ischemic myocardial infarction. Intravenously delivered recombinant AAV vectors designed with a TREE to direct a constitutively active YAP factor boosted indicators of cardiac regeneration in mice and improved the function of the injured heart. Our findings establish the application of contextual enhancer elements as a potential therapeutic platform for spatiotemporally controlled tissue regeneration in mammals.


Subject(s)
Enhancer Elements, Genetic , Genetic Therapy , Heart , Myocardial Infarction , Myocytes, Cardiac , Regeneration , Animals , Mice , Cell Proliferation , Heart/physiology , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Myocytes, Cardiac/metabolism , Zebrafish/genetics , Genetic Therapy/methods , Regeneration/genetics
7.
Science ; 377(6610): eabm4443, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36048959

ABSTRACT

Heart regenerative medicine has been gradually evolving from a view of the heart as a nonregenerative organ with terminally differentiated cardiac muscle cells. Understanding the biology of the heart during homeostasis and in response to injuries has led to the realization that cellular communication between all cardiac cell types holds great promise for treatments. Indeed, recent studies highlight new disease-reversion concepts in addition to cardiomyocyte renewal, such as matrix- and vascular-targeted therapies, and immunotherapy with a focus on inflammation and fibrosis. In this review, we will discuss the cross-talk within the cardiac microenvironment and how specific therapies aim to target the hostile cardiac milieu under pathological conditions.


Subject(s)
Heart Diseases , Myocytes, Cardiac , Regeneration , Regenerative Medicine , Animals , Cell Communication , Cell Differentiation , Heart Diseases/therapy , Humans , Mice , Myocytes, Cardiac/physiology , Regeneration/physiology , Regenerative Medicine/trends
8.
Dev Cell ; 56(24): 3349-3363.e6, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34932950

ABSTRACT

Myoblast fusion is essential for muscle development and regeneration. Yet, it remains poorly understood how mononucleated myoblasts fuse with preexisting fibers. We demonstrate that ERK1/2 inhibition (ERKi) induces robust differentiation and fusion of primary mouse myoblasts through a linear pathway involving RXR, ryanodine receptors, and calcium-dependent activation of CaMKII in nascent myotubes. CaMKII activation results in myotube growth via fusion with mononucleated myoblasts at a fusogenic synapse. Mechanistically, CaMKII interacts with and regulates MYMK and Rac1, and CaMKIIδ/γ knockout mice exhibit smaller regenerated myofibers following injury. In addition, the expression of a dominant negative CaMKII inhibits the formation of large multinucleated myotubes. Finally, we demonstrate the evolutionary conservation of the pathway in chicken myoblasts. We conclude that ERK1/2 represses a signaling cascade leading to CaMKII-mediated fusion of myoblasts to myotubes, providing an attractive target for the cultivated meat industry and regenerative medicine.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Muscle Fibers, Skeletal/cytology , Myoblasts/cytology , Actins/metabolism , Animals , Calcium/metabolism , Cell Differentiation/drug effects , Cell Fusion , Cell Proliferation/drug effects , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Mice, Inbred C57BL , Models, Biological , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Proteins/metabolism , Myoblasts/drug effects , Myoblasts/metabolism , Protein Binding , Protein Kinase Inhibitors/pharmacology , Receptors, Retinoic Acid/metabolism , Signal Transduction , rac1 GTP-Binding Protein/metabolism
9.
Nat Commun ; 12(1): 3100, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035288

ABSTRACT

Hippo signaling is an evolutionarily conserved pathway that restricts growth and regeneration predominantly by suppressing the activity of the transcriptional coactivator Yap. Using a high-throughput phenotypic screen, we identified a potent and non-toxic activator of Yap. In vitro kinase assays show that the compound acts as an ATP-competitive inhibitor of Lats kinases-the core enzymes in Hippo signaling. The substance prevents Yap phosphorylation and induces proliferation of supporting cells in the murine inner ear, murine cardiomyocytes, and human Müller glia in retinal organoids. RNA sequencing indicates that the inhibitor reversibly activates the expression of transcriptional Yap targets: upon withdrawal, a subset of supporting-cell progeny exits the cell cycle and upregulates genes characteristic of sensory hair cells. Our results suggest that the pharmacological inhibition of Lats kinases may promote initial stages of the proliferative regeneration of hair cells, a process thought to be permanently suppressed in the adult mammalian inner ear.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cell Proliferation/drug effects , Protein Serine-Threonine Kinases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Tumor Suppressor Proteins/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line , Cell Line, Tumor , Cell Proliferation/genetics , Ependymoglial Cells/cytology , Ependymoglial Cells/drug effects , Ependymoglial Cells/metabolism , HEK293 Cells , Hair Cells, Auditory, Inner/cytology , Hair Cells, Auditory, Inner/drug effects , Hair Cells, Auditory, Inner/metabolism , Humans , Mice, Knockout , Mice, Transgenic , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Suppressor Proteins/metabolism , YAP-Signaling Proteins
10.
Development ; 148(9)2021 05 01.
Article in English | MEDLINE | ID: mdl-33969874

ABSTRACT

During heart development, epicardial cells residing within the outer layer undergo epithelial-mesenchymal transition (EMT) and migrate into the underlying myocardium to support organ growth and morphogenesis. Disruption of epicardial EMT results in embryonic lethality, yet its regulation is poorly understood. Here, we report epicardial EMT within the mesothelial layer of the mouse embryonic heart at ultra-high resolution using scanning electron microscopy combined with immunofluorescence analyses. We identified morphologically active EMT regions that associated with key components of the extracellular matrix, including the basement membrane-associated proteoglycan agrin. Deletion of agrin resulted in impaired EMT and compromised development of the epicardium, accompanied by downregulation of Wilms' tumor 1. Agrin enhanced EMT in human embryonic stem cell-derived epicardial-like cells by decreasing ß-catenin and promoting pFAK localization at focal adhesions, and promoted the aggregation of dystroglycan within the Golgi apparatus in murine epicardial cells. Loss of agrin resulted in dispersal of dystroglycan in vivo, disrupting basement membrane integrity and impairing EMT. Our results provide new insights into the role of the extracellular matrix in heart development and implicate agrin as a crucial regulator of epicardial EMT.


Subject(s)
Agrin/metabolism , Epithelial-Mesenchymal Transition/physiology , Extracellular Matrix Proteins/metabolism , Heart/embryology , Heart/growth & development , Organogenesis/physiology , Animals , Female , Genetic Heterogeneity , Golgi Apparatus , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardium/metabolism , Pericardium/metabolism , beta Catenin/genetics , beta Catenin/metabolism
11.
Methods Mol Biol ; 2158: 3-21, 2021.
Article in English | MEDLINE | ID: mdl-32857361

ABSTRACT

The discovery of endogenous regenerative potential of the heart in zebrafish and neonatal mice has shifted the cardiac regenerative field towards the utilization of intrinsic regenerative mechanisms in the mammalian heart. The goal of these studies is to understand, and eventually apply, the neonatal regenerative mechanisms into adulthood. To facilitate these studies, the last two decades have seen advancements in the development of injury models in adult mice representative of the diversity of cardiac diseases. Here, we provide an overview for a selection of the most common cardiac ischemic injury models and describe a set of methods used to accurately analyze and quantify cardiac outcomes. Importantly, a comprehensive understanding of cardiac regeneration and repair requires a combination of multiple functional, histological, and molecular analyses.


Subject(s)
Heart/physiopathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Regeneration , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR
12.
Skelet Muscle ; 10(1): 31, 2020 10 24.
Article in English | MEDLINE | ID: mdl-33099315
13.
Nat Cell Biol ; 22(11): 1346-1356, 2020 11.
Article in English | MEDLINE | ID: mdl-33046882

ABSTRACT

Cardiomyocyte loss after injury results in adverse remodelling and fibrosis, inevitably leading to heart failure. The ERBB2-Neuregulin and Hippo-YAP signalling pathways are key mediators of heart regeneration, yet the crosstalk between them is unclear. We demonstrate that transient overexpression of activated ERBB2 in cardiomyocytes (OE CMs) promotes cardiac regeneration in a heart failure model. OE CMs present an epithelial-mesenchymal transition (EMT)-like regenerative response manifested by cytoskeletal remodelling, junction dissolution, migration and extracellular matrix turnover. We identified YAP as a critical mediator of ERBB2 signalling. In OE CMs, YAP interacts with nuclear-envelope and cytoskeletal components, reflecting an altered mechanical state elicited by ERBB2. We identified two YAP-activating phosphorylations on S352 and S274 in OE CMs, which peak during metaphase, that are ERK dependent and Hippo independent. Viral overexpression of YAP phospho-mutants dampened the proliferative competence of OE CMs. Together, we reveal a potent ERBB2-mediated YAP mechanotransduction signalling, involving EMT-like characteristics, resulting in robust heart regeneration.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Cell Proliferation , Epithelial-Mesenchymal Transition , Heart Failure/metabolism , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Receptor, ErbB-2/metabolism , Regeneration , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Cycle Proteins/genetics , Cells, Cultured , Cytoskeleton/metabolism , Cytoskeleton/pathology , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibrosis , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/physiopathology , Mechanotransduction, Cellular , Mice, Transgenic , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/pathology , Phosphorylation , Receptor, ErbB-2/genetics , YAP-Signaling Proteins
14.
Circulation ; 142(9): 868-881, 2020 09.
Article in English | MEDLINE | ID: mdl-32508131

ABSTRACT

BACKGROUND: Ischemic heart diseases are leading causes of death and reduced life quality worldwide. Although revascularization strategies significantly reduce mortality after acute myocardial infarction (MI), a large number of patients with MI develop chronic heart failure over time. We previously reported that a fragment of the extracellular matrix protein agrin promotes cardiac regeneration after MI in adult mice. METHODS: To test the therapeutic potential of agrin in a preclinical porcine model, we performed ischemia-reperfusion injuries using balloon occlusion for 60 minutes followed by a 3-, 7-, or 28-day reperfusion period. RESULTS: We demonstrated that local (antegrade) delivery of recombinant human agrin to the infarcted pig heart can target the affected regions in an efficient and clinically relevant manner. A single dose of recombinant human agrin improved heart function, infarct size, fibrosis, and adverse remodeling parameters 28 days after MI. Short-term MI experiments along with complementary murine studies revealed myocardial protection, improved angiogenesis, inflammatory suppression, and cell cycle reentry as agrin's mechanisms of action. CONCLUSIONS: A single dose of agrin is capable of reducing ischemia-reperfusion injury and improving heart function, demonstrating that agrin could serve as a therapy for patients with acute MI and potentially heart failure.


Subject(s)
Agrin/pharmacology , Myocardial Infarction/drug therapy , Myocardial Reperfusion Injury/drug therapy , Recovery of Function/drug effects , Animals , Humans , Mice , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Recombinant Proteins/pharmacology , Swine
15.
Elife ; 82019 12 23.
Article in English | MEDLINE | ID: mdl-31868165

ABSTRACT

During cardiac development, cardiomyocytes form complex inner wall structures called trabeculae. Despite significant investigation into this process, the potential role of metabolism has not been addressed. Using single cell resolution imaging in zebrafish, we find that cardiomyocytes seeding the trabecular layer actively change their shape while compact layer cardiomyocytes remain static. We show that Erbb2 signaling, which is required for trabeculation, activates glycolysis to support changes in cardiomyocyte shape and behavior. Pharmacological inhibition of glycolysis impairs cardiac trabeculation, and cardiomyocyte-specific loss- and gain-of-function manipulations of glycolysis decrease and increase trabeculation, respectively. In addition, loss of the glycolytic enzyme pyruvate kinase M2 impairs trabeculation. Experiments with rat neonatal cardiomyocytes in culture further support these observations. Our findings reveal new roles for glycolysis in regulating cardiomyocyte behavior during cardiac wall morphogenesis.


Subject(s)
Heart/embryology , Heart/growth & development , Morphogenesis/physiology , Myocytes, Cardiac/metabolism , Zebrafish/embryology , Zebrafish/growth & development , Zebrafish/metabolism , Animals , Animals, Genetically Modified , Cell Proliferation , Gene Expression Regulation, Developmental , Genes, erbB-2/genetics , Glycolysis , Heart/physiology , Models, Animal , Morphogenesis/genetics , Organogenesis/genetics , Organogenesis/physiology , Rats , Signal Transduction/physiology , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
16.
Elife ; 82019 12 23.
Article in English | MEDLINE | ID: mdl-31868166

ABSTRACT

While the heart regenerates poorly in mammals, efficient heart regeneration occurs in zebrafish. Studies in zebrafish have resulted in a model in which preexisting cardiomyocytes dedifferentiate and reinitiate proliferation to replace the lost myocardium. To identify which processes occur in proliferating cardiomyocytes we have used a single-cell RNA-sequencing approach. We uncovered that proliferating border zone cardiomyocytes have very distinct transcriptomes compared to the nonproliferating remote cardiomyocytes and that they resemble embryonic cardiomyocytes. Moreover, these cells have reduced expression of mitochondrial genes and reduced mitochondrial activity, while glycolysis gene expression and glucose uptake are increased, indicative for metabolic reprogramming. Furthermore, we find that the metabolic reprogramming of border zone cardiomyocytes is induced by Nrg1/ErbB2 signaling and is important for their proliferation. This mechanism is conserved in murine hearts in which cardiomyocyte proliferation is induced by activating ErbB2 signaling. Together these results demonstrate that glycolysis regulates cardiomyocyte proliferation during heart regeneration.


Subject(s)
Cell Proliferation , Cellular Reprogramming/physiology , Heart/physiology , Myocytes, Cardiac/metabolism , Regeneration/physiology , Signal Transduction/physiology , Single-Cell Analysis/methods , Zebrafish/growth & development , Animals , Animals, Genetically Modified , Cellular Reprogramming/genetics , Female , Gene Expression Regulation, Developmental , Genes, erbB-2/genetics , Genes, erbB-2/physiology , Glycolysis , Heart/embryology , Hexokinase/genetics , Hexokinase/metabolism , Male , Mice , Models, Animal , Myocardium/metabolism , Myocytes, Cardiac/cytology , Neuregulin-1/genetics , Regeneration/genetics , Signal Transduction/genetics , Zebrafish/embryology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
17.
JCI Insight ; 4(22)2019 11 14.
Article in English | MEDLINE | ID: mdl-31723055

ABSTRACT

The adult mammalian heart regenerates poorly after injury and, as a result, ischemic heart diseases are among the leading causes of death worldwide. The recovery of the injured heart is dependent on orchestrated repair processes including inflammation, fibrosis, cardiomyocyte survival, proliferation, and contraction properties that could be modulated in patients. In this work we designed an automated high-throughput screening system for small molecules that induce cardiomyocyte proliferation in vitro and identified the small molecule Chicago Sky Blue 6B (CSB). Following induced myocardial infarction, CSB treatment reduced scar size and improved heart function of adult mice. Mechanistically, we show that although initially identified using in vitro screening for cardiomyocyte proliferation, in the adult mouse CSB promotes heart repair through (i) inhibition of CaMKII signaling, which improves cardiomyocyte contractility; and (ii) inhibition of neutrophil and macrophage activation, which attenuates the acute inflammatory response, thereby contributing to reduced scarring. In summary, we identified CSB as a potential therapeutic agent that enhances cardiac repair and function by suppressing postinjury detrimental processes, with no evidence for cardiomyocyte renewal.


Subject(s)
Heart/drug effects , Myocardial Infarction/metabolism , Myocytes, Cardiac , Trypan Blue/pharmacology , Animals , Cell Proliferation/drug effects , Cells, Cultured , Cicatrix/metabolism , Female , Mice , Mice, Inbred ICR , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism
19.
Int J Stem Cells ; 12(2): 360-366, 2019 Jul 30.
Article in English | MEDLINE | ID: mdl-30836735

ABSTRACT

The robust capacity of skeletal muscle stem cells (SkMSCs, or satellite cells) to regenerate into new muscles in vivo has offered promising therapeutic options for the treatment of degenerative muscle diseases. However, the practical use of SkMSCs to treat muscle diseases is limited, owing to their inability to expand in vitro under defined cultivation conditions without loss of engraftment efficiency. To develop an optimal cultivation condition for SkMSCs, we investigated the behavior of SkMSCs on synthetic maltose-binding protein (MBP)-fibroblast growth factor 2 (FGF2)-immobilized matrix in vitro. We found that the chemically well-defined, xeno-free MBP-FGF2-immobilized matrix effectively supports SkMSC growth without reducing their differentiation potential in vitro. Our data highlights the possible application of the MBP-FGF2 matrix for SkMSC expansion in vitro.

20.
Dev Cell ; 48(6): 853-863.e5, 2019 03 25.
Article in English | MEDLINE | ID: mdl-30713073

ABSTRACT

Attaining proper organ size during development and regeneration hinges on the activity of mitogenic factors. Here, we performed a large-scale chemical screen in embryonic zebrafish to identify cardiomyocyte mitogens. Although commonly considered anti-proliferative, vitamin D analogs like alfacalcidol had rapid, potent mitogenic effects on embryonic and adult cardiomyocytes in vivo. Moreover, pharmacologic or genetic manipulation of vitamin D signaling controlled proliferation in multiple adult cell types and dictated growth rates in embryonic and juvenile zebrafish. Tissue-specific modulation of vitamin D receptor (VDR) signaling had organ-restricted effects, with cardiac VDR activation causing cardiomegaly. Alfacalcidol enhanced the regenerative response of injured zebrafish hearts, whereas VDR blockade inhibited regeneration. Alfacalcidol activated cardiac expression of genes associated with ErbB2 signaling, while ErbB2 inhibition blunted its effects on cell proliferation. Our findings identify vitamin D as mitogenic for cardiomyocytes and other cell types in zebrafish and indicate a mechanism to regulate organ size and regeneration.


Subject(s)
Heart/anatomy & histology , Heart/physiology , Myocytes, Cardiac/cytology , Regeneration/drug effects , Vitamin D/pharmacology , Zebrafish/anatomy & histology , Zebrafish/physiology , Animals , Cell Cycle/drug effects , Cell Proliferation/drug effects , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/drug effects , Heart/drug effects , Mitogens/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Organ Size/drug effects , Organ Specificity , Signal Transduction/drug effects , Zebrafish/embryology , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...