Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20149, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978237

ABSTRACT

The skin is a vital organ in the human body, providing essential functions such as protection, sensation, and metabolism. Skin hydration is one of the crucial factors in maintaining normal skin function. Insufficient skin hydration can lead to dryness, shedding of the stratum corneum, a decrease in skin barrier function, and may cause skin inflammation. Therefore, maintaining or improving skin hydration is critical in promoting healthy skin. Currently, the commonly used method for measuring skin hydration is bioelectrical capacitance analysis, which is often affected by environmental humidity and can only provide limited information. To overcome these limitations, this study used diffuse reflectance spectroscopy (DRS) in the wavelength range of 400-1000 nm to quantify skin absorption and scattering modulation caused by changes in skin hydration states. The advantages of this technique include rapid measurements, non-invasiveness, a straightforward optical setup, and suitability for prolonged skin monitoring. We found that DRS-derived skin absorption coefficients had a correlation coefficient of 0.93 with the skin capacitance at various skin hydration states. In addition, our findings reveal that absorption and scattering coefficients may be useful in discerning skin hydration enhancement induced by applying soaked cotton pads or cosmeceutical facial masks, as well as evaluating skin sensation. This study verifies that the DRS method could be a convenient and effective tool for evaluating skin hydration related information.


Subject(s)
Body Water , Skin , Humans , Body Water/metabolism , Skin/metabolism , Skin Absorption , Spectrum Analysis , Sensation
2.
Biomed Opt Express ; 14(1): 467-476, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36698673

ABSTRACT

The prevalence rate of neonatal jaundice can reach 80%, of which 5% may develop dangerous hemolytic jaundice. The blood test for obtaining bilirubin and hemoglobin concentration is the gold standard for diagnosing hemolytic jaundice; however, frequently drawing blood from jaundice neonates for the screening purpose is not practical. We have developed a handheld diffuse reflectance spectroscopy system to noninvasively determine the bilirubin and hemoglobin levels in neonates. Our study showed that the correlation coefficients were 0.95 and 0.80 for bilirubin and hemoglobin between the results from the blood tests and our handheld system, respectively. This handheld system could be an effective tool for screening hemolytic jaundice.

3.
Sci Rep ; 11(1): 8901, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33903688

ABSTRACT

Psoriasis affects more than 125 million people worldwide, and the diagnosis and treatment efficacy evaluation of the disease mainly rely on clinical assessments that could be subjective. Our previous study showed that the skin erythema level could be quantified using diffuse reflectance spectroscopy (DRS), and the hemoglobin concentration of most psoriatic lesion was higher than that of its adjacent uninvolved skin. While the compromised epidermal barrier function has been taken as the major cause of clinical manifestation of skin dryness and inflammation of psoriasis, very few methods can be used to effectively evaluate this function. In this study, we investigate the near infrared spectroscopic features of psoriatic (n = 21) and normal (n = 21) skin that could link to the epidermal barrier function. From the DRS measurements, it was found that the water bonding status and light scattering properties of psoriasis are significantly different from those of uninvolved or normal skin. The connection between these parameters to the epidermal barrier function and morphology will be discussed. Our results suggest that objective evaluation of epidermal barrier function of psoriasis could be achieved using a simple DRS system.


Subject(s)
Epidermis/metabolism , Psoriasis/metabolism , Water Loss, Insensible , Water/metabolism , Adult , Aged , Female , Humans , Male , Middle Aged , Spectrum Analysis
4.
Biomed Opt Express ; 7(2): 542-58, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26977361

ABSTRACT

Spatially resolved diffuse reflectance spectroscopy (SRDRS) has been employed to quantify tissue optical properties and its interrogation volume is majorly controlled by the source-to-detector separations (SDSs). To noninvasively quantify properties of dermis, a SRDRS setup that includes SDS shorter than 1 mm is required. It will be demonstrated in this study that Monte Carlo simulations employing the Henyey-Greenstein phase function cannot always precisely predict experimentally measured diffuse reflectance at such short SDSs, and we speculated this could be caused by the non-negligible backward light scattering at short SDSs that cannot be properly modeled by the Henyey-Greenstein phase function. To accurately recover the optical properties and functional information of dermis using SRDRS, we proposed the use of the modified two-layer (MTL) geometry. Monte Carlo simulations and phantom experiment results revealed that the MTL probing geometry was capable of faithfully recovering the optical properties of upper dermis. The capability of the MTL geometry in probing the upper dermis properties was further verified through a swine study, and it was found that the measurement results were reasonably linked to histological findings. Finally, the MTL probe was utilized to study psoriatic lesions. Our results showed that the MTL probe was sensitive to the physiological condition of tissue volumes within the papillary dermis and could be used in studying the physiology of psoriasis.

5.
Biomed Opt Express ; 7(2): 616-28, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26977366

ABSTRACT

Diffuse reflectance spectroscopy (DRS) has been utilized to study biological tissues for a variety of applications. However, many DRS systems are not designed for handheld use and/or relatively expensive which limit the extensive clinical use of this technique. In this paper, we report a handheld, low-cost DRS system consisting of a light source, optical switch, and a spectrometer, that can precisely quantify the optical properties of tissue samples in the clinical setting. The handheld DRS system was employed to determine the skin chromophore concentrations, absorption and scattering properties of 11 patients with psoriasis. The measurement results were compared to the clinical severity of psoriasis as evaluated by dermatologist using PASI (Psoriasis Area and Severity Index) scores. Our statistical analyses indicated that the handheld DRS system could be a useful non-invasive tool for objective evaluation of the severity of psoriasis. It is expected that the handheld system can be used for the objective evaluation and monitoring of various skin diseases such as keloid and psoriasis.

6.
Neurophotonics ; 2(3): 035004, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26301255

ABSTRACT

We introduce and validate a pressure measurement paradigm that reduces extracerebral contamination from superficial tissues in optical monitoring of cerebral blood flow with diffuse correlation spectroscopy (DCS). The scheme determines subject-specific contributions of extracerebral and cerebral tissues to the DCS signal by utilizing probe pressure modulation to induce variations in extracerebral blood flow. For analysis, the head is modeled as a two-layer medium and is probed with long and short source-detector separations. Then a combination of pressure modulation and a modified Beer-Lambert law for flow enables experimenters to linearly relate differential DCS signals to cerebral and extracerebral blood flow variation without a priori anatomical information. We demonstrate the algorithm's ability to isolate cerebral blood flow during a finger-tapping task and during graded scalp ischemia in healthy adults. Finally, we adapt the pressure modulation algorithm to ameliorate extracerebral contamination in monitoring of cerebral blood oxygenation and blood volume by near-infrared spectroscopy.

7.
Biomed Opt Express ; 6(2): 390-404, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25780731

ABSTRACT

The pathogenesis and ideal treatment of keloid are still largely unknown, and it is essential to develop an objective assessment of keloid severity to evaluate the therapeutic response. We previously reported that our diffuse reflectance spectroscopy (DRS) system could assist clinicians in understanding the functional and structural condition of keloid scars. The purpose of this study was to understand clinical applicability of our DRS system on evaluating the scar severity and therapeutic response of keloid. We analyzed 228 spectral data from 71 subjects with keloid scars. The scars were classified into mild (0-3), moderate (4-7) and severe (8-11) according to the Vancouver scar scale. We found that as the severity of the scar increased, collagen concentration and water content increased, and the reduced scattering coefficient at 800 nm and oxygen saturation (SaO2) decreased. Using the DRS system, we found that collagen bundles aligned in a specific direction in keloid scars, but not in normal scars. Water content and SaO2 may be utilized as reliable parameters for evaluating the therapeutic response of keloid. In conclusion, the results obtained here suggest that the DRS has potential as an objective technique with which to evaluate keloid scar severity. In addition, it may be useful as a tool with which to track longitudinal response of scars in response to various therapeutic interventions.

8.
J Biomed Opt ; 17(7): 077005, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22894518

ABSTRACT

Collagen is a rich component in skin that provides skin structure integrity; however, its contribution to the absorption and scattering properties of various types of skin has not been extensively studied. We considered the contribution of the collagen to the absorption spectrum of in vivo normal skin and keloids of 12 subjects derived from our diffuse reflectance spectroscopy (DRS) system in the wavelength range from 550 to 860 nm. It was found that the collagen concentration, the hemoglobin oxygen saturation, and the reduced scattering coefficient of keloids were remarkably different from that of normal skin. Our results suggest that our DRS system could assist clinicians in understanding the functional and structural condition of keloid scars. In the future, we will evaluate the accuracy of our system in the keloid diagnosis and investigate the applicability of our system for other skin-collagen-related studies.


Subject(s)
Acne Keloid/diagnosis , Acne Keloid/metabolism , Collagen/analysis , Hemoglobins/analysis , Skin/chemistry , Spectrum Analysis/methods , Biomarkers/analysis , Humans , Light , Reference Values , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL