Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Mol Med ; 16(5): 1091-1114, 2024 May.
Article in English | MEDLINE | ID: mdl-38589651

ABSTRACT

PAR3/INSC/LGN form an evolutionarily conserved complex required for asymmetric cell division in the developing brain, but its post-developmental function and disease relevance in the peripheral nervous system (PNS) remains unknown. We mapped a new locus for axonal Charcot-Marie-Tooth disease (CMT2) and identified a missense mutation c.209 T > G (p.Met70Arg) in the INSC gene. Modeling the INSCM70R variant in Drosophila, we showed that it caused proprioceptive defects in adult flies, leading to gait defects resembling those in CMT2 patients. Cellularly, PAR3/INSC/LGN dysfunction caused tubulin aggregation and necrotic neurodegeneration, with microtubule-stabilizing agents rescuing both morphological and functional defects of the INSCM70R mutation in the PNS. Our findings underscore the critical role of the PAR3/INSC/LGN machinery in the adult PNS and highlight a potential therapeutic target for INSC-associated CMT2.


Subject(s)
Charcot-Marie-Tooth Disease , Mutation, Missense , Animals , Humans , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Drosophila/genetics , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/pathology , Disease Models, Animal , Tubulin/genetics , Tubulin/metabolism , Nuclear Proteins , Adaptor Proteins, Signal Transducing
2.
Prog Lipid Res ; 91: 101236, 2023 07.
Article in English | MEDLINE | ID: mdl-37187315

ABSTRACT

Dihydroceramide desaturase 1 (DEGS1) converts dihydroceramide (dhCer) to ceramide (Cer) by inserting a C4-C5 trans (∆4E) double bond into the sphingoid backbone. Low DEGS activity causes accumulation of dhCer and other dihydrosphingolipid species. Although dhCer and Cer are structurally very similar, their imbalances can have major consequences both in vitro and in vivo. Mutations in the human DEGS1 gene are known to cause severe neurological defects, such as hypomyelinating leukodystrophy. Likewise, inhibition of DEGS1 activity in fly and zebrafish models causes dhCer accumulation and subsequent neuronal dysfunction, suggesting that DEGS1 activity plays a conserved and critical role in the nervous system. Dihydrosphingolipids and their desaturated counterparts are known to control various essential processes, including autophagy, exosome biogenesis, ER stress, cell proliferation, and cell death. Furthermore, model membranes with either dihydrosphingolipids or sphingolipids exhibit different biophysical properties, including membrane permeability and packing, thermal stability, and lipid diffusion. However, the links between molecular properties, in vivo functional data, and clinical manifestations that underlie impaired DEGS1 function remain largely unresolved. In this review, we summarize the known biological and pathophysiological roles of dhCer and its derivative dihydrosphingolipid species in the nervous system, and we highlight several possible disease mechanisms that warrant further investigation.


Subject(s)
Ceramides , Zebrafish , Animals , Humans , Zebrafish/metabolism , Ceramides/metabolism , Sphingolipids/metabolism , Nervous System/metabolism
3.
IUBMB Life ; 74(4): 339-360, 2022 04.
Article in English | MEDLINE | ID: mdl-34874101

ABSTRACT

Autophagy regulates cellular homeostasis by degrading and recycling cytosolic components and damaged organelles. Disruption of autophagic flux has been shown to induce or facilitate neurodegeneration and accumulation of autophagic vesicles is overt in neurodegenerative diseases. The fruit fly Drosophila has been used as a model system to identify new factors that regulate physiology and disease. Here we provide a historical perspective of how the fly models have offered mechanistic evidence to understand the role of autophagy in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Charcot-Marie-Tooth neuropathy, and polyglutamine disorders. Autophagy also plays a pivotal role in maintaining tissue homeostasis and protecting organism health. The gastrointestinal tract regulates organism health by modulating food intake, energy balance, and immunity. Growing evidence is strengthening the link between autophagy and digestive tract health in recent years. Here, we also discuss how the fly models have advanced the understanding of digestive physiology regulated by autophagy.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Animals , Autophagy/genetics , Drosophila/genetics , Gastrointestinal Tract , Neurodegenerative Diseases/genetics
4.
Cell Rep ; 35(2): 108972, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852856

ABSTRACT

Disruption of sphingolipid homeostasis is known to cause neurological disorders, but the mechanisms by which specific sphingolipid species modulate pathogenesis remain unclear. The last step of de novo sphingolipid synthesis is the conversion of dihydroceramide to ceramide by dihydroceramide desaturase (human DEGS1; Drosophila Ifc). Loss of ifc leads to dihydroceramide accumulation, oxidative stress, and photoreceptor degeneration, whereas human DEGS1 variants are associated with leukodystrophy and neuropathy. In this work, we demonstrate that DEGS1/ifc regulates Rac1 compartmentalization in neuronal cells and that dihydroceramide alters the association of active Rac1 with organelle-mimicking membranes. We further identify the Rac1-NADPH oxidase (NOX) complex as the major cause of reactive oxygen species (ROS) accumulation in ifc-knockout (ifc-KO) photoreceptors and in SH-SY5Y cells with the leukodystrophy-associated DEGS1H132R variant. Suppression of Rac1-NOX activity rescues degeneration of ifc-KO photoreceptors and ameliorates oxidative stress in DEGS1H132R-carrying cells. Therefore, we conclude that DEGS1/ifc deficiency causes dihydroceramide accumulation, resulting in Rac1 mislocalization and NOX-dependent neurodegeneration.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Fatty Acid Desaturases/genetics , Membrane Proteins/genetics , NADPH Oxidases/genetics , rac1 GTP-Binding Protein/genetics , Animals , Cell Line, Tumor , Ceramides/metabolism , Drosophila Proteins/deficiency , Drosophila melanogaster/metabolism , Electroretinography , Fatty Acid Desaturases/antagonists & inhibitors , Fatty Acid Desaturases/metabolism , Gene Expression Regulation , Humans , Membrane Proteins/deficiency , NADPH Oxidases/metabolism , Neurons/metabolism , Neurons/pathology , Oxidative Stress , Photoreceptor Cells, Invertebrate/metabolism , Photoreceptor Cells, Invertebrate/pathology , Point Mutation , Protein Binding , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism , Retina/metabolism , Retina/pathology , Signal Transduction , rac1 GTP-Binding Protein/metabolism
5.
Nat Commun ; 11(1): 3147, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32561720

ABSTRACT

Transposons are known to participate in tissue aging, but their effects on aged stem cells remain unclear. Here, we report that in the Drosophila ovarian germline stem cell (GSC) niche, aging-related reductions in expression of Piwi (a transposon silencer) derepress retrotransposons and cause GSC loss. Suppression of Piwi expression in the young niche mimics the aged niche, causing retrotransposon depression and coincident activation of Toll-mediated signaling, which promotes Glycogen synthase kinase 3 activity to degrade ß-catenin. Disruption of ß-catenin-E-cadherin-mediated GSC anchorage then results in GSC loss. Knocking down gypsy (a highly active retrotransposon) or toll, or inhibiting reverse transcription in the piwi-deficient niche, suppresses GSK3 activity and ß-catenin degradation, restoring GSC-niche attachment. This retrotransposon-mediated impairment of aged stem cell maintenance may have relevance in many tissues, and could represent a viable therapeutic target for aging-related tissue degeneration.


Subject(s)
Argonaute Proteins/metabolism , Cellular Senescence , Drosophila Proteins/metabolism , Drosophila melanogaster , Germ Cells/metabolism , Animals , Argonaute Proteins/genetics , Cadherins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Gene Silencing , Glycogen Synthase Kinase 3/metabolism , Ovary/cytology , Ovary/metabolism , Retroelements/genetics , Signal Transduction , Stem Cell Niche/physiology , Stem Cells/metabolism , Toll-Like Receptors/metabolism , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...