Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cancer ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844817

ABSTRACT

Many individuals with cancer are resistant to immunotherapies. Here, we identify the gene encoding the pyrimidine salvage pathway enzyme cytidine deaminase (CDA) among the top upregulated metabolic genes in several immunotherapy-resistant tumors. We show that CDA in cancer cells contributes to the uridine diphosphate (UDP) pool. Extracellular UDP hijacks immunosuppressive tumor-associated macrophages (TAMs) through its receptor P2Y6. Pharmacologic or genetic inhibition of CDA in cancer cells (or P2Y6 in TAMs) disrupts TAM-mediated immunosuppression, promoting cytotoxic T cell entry and susceptibility to anti-programmed cell death protein 1 (anti-PD-1) treatment in resistant pancreatic ductal adenocarcinoma (PDAC) and melanoma models. Conversely, CDA overexpression in CDA-depleted PDACs or anti-PD-1-responsive colorectal tumors or systemic UDP administration (re)establishes resistance. In individuals with PDAC, high CDA levels in cancer cells correlate with increased TAMs, lower cytotoxic T cells and possibly anti-PD-1 resistance. In a pan-cancer single-cell atlas, CDAhigh cancer cells match with T cell cytotoxicity dysfunction and P2RY6high TAMs. Overall, we suggest CDA and P2Y6 as potential targets for cancer immunotherapy.

2.
Cancer Immunol Res ; 11(12): 1611-1629, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37933083

ABSTRACT

Forkhead box P3 (Foxp3)-expressing regulatory T cells (Treg) are the guardians of controlled immune reactions and prevent the development of autoimmune diseases. However, in the tumor context, their increased number suppresses antitumor immune responses, indicating the importance of understanding the mechanisms behind their function and stability. Metabolic reprogramming can affect Foxp3 regulation and, therefore, Treg suppressive function and fitness. Here, we performed a metabolic CRISPR/Cas9 screen and pinpointed novel candidate positive and negative metabolic regulators of Foxp3. Among the positive regulators, we revealed that targeting the GDP-fucose transporter Slc35c1, and more broadly fucosylation (Fuco), in Tregs compromises their proliferation and suppressive function both in vitro and in vivo, leading to alteration of the tumor microenvironment and impaired tumor progression and protumoral immune responses. Pharmacologic inhibition of Fuco dampened tumor immunosuppression mostly by targeting Tregs, thus resulting in reduced tumor growth. In order to substantiate these findings in humans, tumoral Tregs from patients with colorectal cancer were clustered on the basis of the expression of Fuco-related genes. FucoLOW Tregs were found to exhibit a more immunogenic profile compared with FucoHIGH Tregs. Furthermore, an enrichment of a FucoLOW signature, mainly derived from Tregs, correlated with better prognosis and response to immune checkpoint blockade in melanoma patients. In conclusion, Slc35c1-dependent Fuco is able to regulate the suppressive function of Tregs, and measuring its expression in Tregs might pave the way towards a useful biomarker model for patients with cancer. See related Spotlight by Silveria and DuPage, p. 1570.


Subject(s)
Melanoma , T-Lymphocytes, Regulatory , Humans , Immunity , Immune Tolerance , Forkhead Transcription Factors/genetics , Tumor Microenvironment
3.
Int J Mol Sci ; 23(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35216346

ABSTRACT

Absent in melanoma 2 (AIM2) is a cytosolic dsDNA sensor that has been broadly studied for its role in inflammasome assembly. However, little is known about the function of AIM2 in adaptive immune cells. The purpose of this study was to investigate whether AIM2 has a cell-intrinsic role in CD4+ T cell differentiation or function. We found that AIM2 is expressed in both human and mouse CD4+ T cells and that its expression is affected by T cell receptor (TCR) activation. Naïve CD4+ T cells from AIM2-deficient (Aim2-/-) mice showed higher ability to maintain forkhead box P3 (FOXP3) expression in vitro, while their capacity to differentiate into T helper (Th)1, Th2 or Th17 cells remained unaltered. Transcriptional profiling by RNA sequencing showed that AIM2 might affect regulatory T cell (Treg) stability not by controlling the expression of Treg signature genes, but through the regulation of the cell's metabolism. In addition, in a T cell transfer model of colitis, Aim2-/--naïve T cells induced less severe body weight loss and displayed a higher ability to differentiate into FOXP3+ cells in vivo. In conclusion, we show that AIM2 function is not confined to innate immune cells but is also important in CD4+ T cells. Our data identify AIM2 as a regulator of FOXP3+ Treg cell differentiation and as a potential intervention target for restoring T cell homeostasis.


Subject(s)
DNA-Binding Proteins/metabolism , T-Lymphocytes, Regulatory/metabolism , Adult , Animals , Cell Differentiation/physiology , Colitis/metabolism , Female , Forkhead Transcription Factors/metabolism , Humans , Inflammasomes/metabolism , Lymphocyte Activation/physiology , Male , Mice , Mice, Inbred C57BL , Th17 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL