Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Cardiol ; 236: 95-99, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28268083

ABSTRACT

BACKGROUND: Epicardial adipose tissue (EAT) has a close functional and anatomic relationship with epicardial coronary arteries. Accumulating evidence suggests that host microbiome alterations may play a role in several inflammatory/immune disorders, triggering a robust proinflammatory response also involving interleukin-1ß (IL-1ß) and the NALP3 inflammasome. In the current study, we explore the hypothesis that in patients with non-ST elevation acute coronary syndrome (ACS), EAT contains potentially pro-atherosclerotic bacteria that might elicit inflammasome activation. METHODS: EAT samples were obtained during coronary artery bypass grafting from ACS (n=18) and effort stable angina (SA; n=16) patients, and as controls, from patients with angiographically normal coronary arteries undergoing surgery for mitral insufficiency (MVD; n=13). In all patients, NALP3 and proIL-1ß mRNA expressions were evaluated with qRT-PCR. In 3 patients from each group, EAT microbiota composition was determined using next-generation sequencing technologies. RESULTS: In EAT, mRNA expression of both NALP3 and pro-IL1ß was significantly higher in ACS than in SA and MVD (P=0.028 and P=0.005, respectively). A broad range of bacterial species (n=76) was identified in both ACS and SA, with different predominant species. In contrast, microbial DNA was barely observed in MVD. CONCLUSIONS: Our study demonstrated the presence of bacterial DNA directly into EAT, surrounding diseased coronary arteries, of patients with ACS. Furthermore, ACS is associated with NALP3/inflammasome pathway activation in EAT. Our data suggest that the EAT environment is susceptible to microbial colonization that might stimulate a proinflammatory response. These findings add new elements to the pathogenesis of ACS and suggest novel therapeutic targets.


Subject(s)
Acute Coronary Syndrome , Adipose Tissue , Coronary Artery Bypass/methods , Inflammasomes/physiology , Microbiota/physiology , Pericardium , Acute Coronary Syndrome/diagnosis , Acute Coronary Syndrome/immunology , Acute Coronary Syndrome/surgery , Adipose Tissue/immunology , Adipose Tissue/microbiology , Adipose Tissue/pathology , Aged , Colony Count, Microbial/methods , Coronary Vessels/pathology , DNA, Bacterial/isolation & purification , Female , Humans , Interleukin-1beta/analysis , Italy , Male , Middle Aged , NLR Family, Pyrin Domain-Containing 3 Protein/analysis , Pericardium/immunology , Pericardium/microbiology , Pericardium/pathology , Statistics as Topic
2.
Basic Res Cardiol ; 109(6): 448, 2014.
Article in English | MEDLINE | ID: mdl-25344833

ABSTRACT

In acute coronary syndrome (ACS), T cell abnormalities are associated to a worse outcome. Loss of inhibitory activity of CD31, an Ig-like adhesion molecule, on peripheral leukocytes has been found to enhance atherosclerosis in experimental models. In this study, we examined the expression of CD31 on T cells, and its role on TCR signaling in 35 patients with non-ST elevation ACS, in 35 patients with stable angina (SA), and in 35 controls. Furthermore, 10 ACS and 10 SA patients were re-analyzed at 1-year follow-up. Flow-cytometry analysis showed that in ACS patients, CD31 expression was reduced on total CD4(+) and CD4(+)CD28(null) (P < 0.001, ACS vs. SA), on naïve (P < 0.001, ACS vs. SA) and on central-memory and effector-memory CD4(+) T cells (P < 0.05, ACS vs. SA and controls). The immunomodulatory effect of CD31 on TCR signaling of CD4(+) and CD4(+)CD28(null) T cells, was lower in ACS than SA patients (P < 0.05, for both comparisons). At 1-year follow-up, CD31 expression and function increased in ACS becoming similar to that found in SA. CD31 recruitment in the immunological synapse was lower in ACS than controls (P = 0.012). Moreover, CD31 modulated MAPK signaling and reduced the expression of T bet and Rorγ-t, necessary for Th1 and Th17 differentiation. Finally, we studied TCR signaling in CD31(+) naïve and primed T cell subsets observing a different pattern of protein phosphorylation. A CD31-mediated regulatory pathway is enhanced in SA and temporarily downregulated in ACS. As CD31 modulates both T cell activation, by increasing the threshold for TCR stimulation, and T cell differentiation, it might represent a novel molecular target to treat T cell abnormalities in ACS.


Subject(s)
Acute Coronary Syndrome/immunology , Platelet Endothelial Cell Adhesion Molecule-1/physiology , T-Lymphocytes, Helper-Inducer/physiology , Acute Coronary Syndrome/metabolism , Aged , Female , Humans , Lymphocyte Activation , Male , Middle Aged , Platelet Endothelial Cell Adhesion Molecule-1/biosynthesis , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL