Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
Biomacromolecules ; 25(6): 3532-3541, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38750618

ABSTRACT

Despite the potential of lignocellulose in manufacturing value-added chemicals and biofuels, its efficient biotechnological conversion by enzymatic hydrolysis still poses major challenges. The complex interplay between xylan, cellulose, and lignin in fibrous materials makes it difficult to assess underlying physico- and biochemical mechanisms. Here, we reduce the complexity of the system by creating matrices of cellulose, xylan, and lignin, which consists of a cellulose base layer and xylan/lignin domains. We follow enzymatic degradation using an endoxylanase by high-speed atomic force microscopy and surface plasmon resonance spectroscopy to obtain morphological and kinetic data. Fastest reaction kinetics were observed at low lignin contents, which were related to the different swelling capacities of xylan. We demonstrate that the complex processes taking place at the interfaces of lignin and xylan in the presence of enzymes can be monitored in real time, providing a future platform for observing phenomena relevant to fiber-based systems.


Subject(s)
Endo-1,4-beta Xylanases , Lignin , Wood , Xylans , Lignin/chemistry , Lignin/metabolism , Xylans/chemistry , Xylans/metabolism , Wood/chemistry , Wood/metabolism , Endo-1,4-beta Xylanases/metabolism , Endo-1,4-beta Xylanases/chemistry , Cellulose/chemistry , Cellulose/metabolism , Hydrolysis , Microscopy, Atomic Force , Kinetics
2.
Int Immunol ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564192

ABSTRACT

IgG molecules that bind antigen on the membrane of target cells spontaneously form hexameric rings, thus recruiting C1 to initiate the complement pathway. However, our previous report indicated that a mouse IgG mutant lacking the Cγ1 domain activates the pathway independently of antigen presence through its monomeric interaction with C1q via the CL domain, as well as Fc. In this study, we investigated the potential interaction between C1q and human CL isoforms. Quantitative single molecule observations using high-speed atomic force microscopy revealed that human Cκ exhibited comparable C1q binding capabilities with its mouse counterpart, surpassing the Cλ types, which have a higher isoelectric point than the Cκ domains. Nuclear magnetic resonance and mutation experiments indicated that the human and mouse Cκ domains share a common primary binding site for C1q, centered on Glu194, a residue conserved in the Cκ domains but absent in the Cλ domains. Additionally, the Cγ1 domain, with its high isoelectric point, can cause electrostatic repulsion to the C1q head and impede the C1q-interaction adjustability of the Cκ domain in Fab. The removal of the Cγ1 domain is considered to eliminate these factors and thus promote Cκ interaction with C1q with the potential risk of uncontrolled activation of the complement pathway in vivo in the absence of antigen. However, this research underscores the presence of potential subsites in Fab for C1q binding, offering promising targets for antibody engineering to refine therapeutic antibody design.

3.
J Mol Biol ; 436(11): 168576, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38641239

ABSTRACT

Prions, the misfolding form of prion proteins, are contagious proteinaceous macromolecules. Recent studies have shown that infectious prion fibrils formed in the brain and non-infectious fibrils formed from recombinant prion protein in a partially denaturing condition have distinct structures. The amyloid core of the in vitro-prepared non-infectious fibrils starts at about residue 160, while that of infectious prion fibrils formed in the brain involves a longer sequence (residues ∼90-230) of structural conversion. The C-terminal truncated prion protein PrP(23-144) can form infectious fibrils under certain conditions and cause disease in animals. In this study, we used cryogenic electron microscopy (cryo-EM) to resolve the structure of hamster sHaPrP(23-144) fibrils prepared at pH 3.7. This 2.88 Å cryo-EM structure has an amyloid core covering residues 94-144. It comprises two protofilaments, each containing five ß-strands arranged as a long hairpin plus an N-terminal ß-strand. This N-terminal ß-strand resides in a positively charged cluster region (named PCC2; sequence 96-111), which interacts with the turn region of the opposite protofilaments' hairpin to stabilize the fibril structure. Interestingly, this sHaPrP(23-144) fibril structure differs from a recently reported structure formed by the human or mouse counterpart at pH 6.5. Moreover, sHaPrP(23-144) fibrils have many structural features in common with infectious prions. Whether this structure is infectious remains to be determined. More importantly, the sHaPrP(23-144) structure is different from the sHaPrP(108-144) fibrils prepared in the same fibrillization buffer, indicating that the N-terminal disordered region, possibly the positively charged cluster, influences the misfolding pathway of the prion protein.


Subject(s)
Amyloid , Prion Proteins , Protein Folding , Animals , Cricetinae , Amyloid/chemistry , Cryoelectron Microscopy/methods , Models, Molecular , Prion Proteins/chemistry , Prion Proteins/genetics , Protein Conformation
4.
Commun Biol ; 7(1): 366, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531947

ABSTRACT

The flagellar type III secretion system (fT3SS) switches substrate specificity from rod-hook-type to filament-type upon hook completion, terminating hook assembly and initiating filament assembly. The C-terminal cytoplasmic domain of FlhA (FlhAC) forms a homo-nonameric ring and is directly involved in substrate recognition, allowing the fT3SS to coordinate flagellar protein export with assembly. The highly conserved GYXLI motif (residues 368-372) of FlhAC induces dynamic domain motions of FlhAC required for efficient and robust flagellar protein export by the fT3SS, but it remains unknown whether this motif is also important for ordered protein export by the fT3SS. Here we analyzed two GYXLI mutants, flhA(GAAAA) and flhA(GGGGG), and provide evidence suggesting that the GYXLI motif in FlhAC requires the flagellar ATPase complex not only to efficiently remodel the FlhAC ring structure for the substrate specificity switching but also to correct substrate recognition errors that occur during flagellar assembly.


Subject(s)
Bacterial Proteins , Membrane Proteins , Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Protein Transport , Salmonella , Proton-Translocating ATPases/metabolism
5.
Nihon Saikingaku Zasshi ; 79(1): 1-13, 2024.
Article in Japanese | MEDLINE | ID: mdl-38382970

ABSTRACT

Proteins in the cells are born (synthesized), work, and die (decomposed). In the life of a protein, its birth is obviously important, but how it dies is equally important in living organisms. Proteases secreted into the outside of cells are used to decompose the external proteins and the degradation products are taken as the nutrients. On the other hand, there are also proteases that decompose unnecessary or harmful proteins which are generated in the cells. In eukaryotes, a large enzyme complex called the proteasome is primarily responsible for degradation of such proteins. Bacteria, which are prokaryotes, have a similar system as the proteasome. We would like to explain the bacterial degradation system of proteins or the death of proteins, which is performed by ATP-dependent protease Clp, with a particular focus on the ClpXP complex, and with an aspect as a target for antibiotics against bacteria.


Subject(s)
Bacteria , Proteasome Endopeptidase Complex , Proteolysis , Proteasome Endopeptidase Complex/metabolism , ATP-Dependent Proteases/metabolism , Bacteria/metabolism , Biological Transport , Bacterial Proteins/metabolism
6.
Nano Lett ; 24(9): 2805-2811, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38408433

ABSTRACT

High-speed atomic force microscopy (HS-AFM) is an indispensable technique in the field of biology owing to its imaging capability with high spatiotemporal resolution. Furthermore, recent developments established tip-scan stand-alone HS-AFM combined with an optical microscope, drastically improving its versatility. It has considerable potential to contribute to not only biology but also various research fields. A great candidate is a photoactive material, such as an azo-polymer, which is important for optical applications because of its unique nanoscale motion under light irradiation. Here, we demonstrate the in situ observation of nanoscale azo-polymer motion by combining tip-scan HS-AFM with an optical system, allowing HS-AFM observations precisely aligned with a focused laser position. We observed the dynamic evolution of unique morphologies in azo-polymer films. Moreover, real-time topographic line profile analyses facilitated precise investigations of the morphological changes. This important demonstration would pave the way for the application of HS-AFM in a wide range of research fields.

7.
Arch Biochem Biophys ; 752: 109854, 2024 02.
Article in English | MEDLINE | ID: mdl-38081338

ABSTRACT

Processive movement is the key reaction for crystalline polymer degradation by enzyme. Product release is an important phenomenon in resetting the moving cycle, but how it affects chitinase kinetics was unknown. Therefore, we investigated the effect of diacetyl chitobiose (C2) on the biochemical activity and movement of chitinase A from Serratia marcescens (SmChiA). The apparent inhibition constant of C2 on crystalline chitin degradation of SmChiA was 159 µM. The binding position of C2 obtained by X-ray crystallography was at subsite +1, +2 and Trp275 interact with C2 at subsite +1. This binding state is consistent with the competitive inhibition obtained by biochemical analysis. The apparent inhibition constant of C2 on the moving velocity of high-speed (HS) AFM observations was 330 µM, which is close to the biochemical results, indicating that the main factor in crystalline chitin degradation is also the decrease in degradation activity due to inhibition of processive movement. The Trp275 is a key residue for making a sliding intermediate complex. SmChiA W275A showed weaker activity and affinity than WT against crystalline chitin because it is less processive than WT. In addition, biochemical apparent inhibition constant for C2 of SmChiA W275A was 45.6 µM. W275A mutant showed stronger C2 inhibition than WT even though the C2 binding affinity is weaker than WT. This result indicated that Trp275 is important for the interaction at subsite +1, but also important for making sliding intermediate complex and physically block the rebinding of C2 on the catalytic site for crystalline chitin degradation.


Subject(s)
Chitinases , Chitinases/chemistry , Chitinases/metabolism , Chitin/chemistry , Chitin/metabolism , Catalytic Domain , Protein Binding , Serratia marcescens/metabolism
8.
J Mol Biol ; 436(5): 168331, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37898385

ABSTRACT

TAT rhodopsin, a microbial rhodopsin found in the marine SAR11 bacterium HIMB114, uniquely possesses a Thr-Ala-Thr (TAT) motif in the third transmembrane helix. Because of a low pKa value of the retinal Schiff base (RSB), TAT rhodopsin exhibits both a visible light-absorbing state with the protonated RSB and a UV-absorbing state with the deprotonated RSB at a neutral pH. The UV-absorbing state, in contrast to the visible light-absorbing one, converts to a long-lived photointermediate upon light absorption, implying that TAT rhodopsin functions as a pH-dependent light sensor. Despite detailed biophysical characterization and mechanistic studies on the TAT rhodopsin, it has been unknown whether other proteins with similarly unusual features exist. Here, we identified several new rhodopsin genes homologous to the TAT rhodopsin of HIMB114 (TATHIMB) from metagenomic data. Based on the absorption spectra of expressed proteins from these genes with visible and UV peaks similar to that of TATHIMB, they were classified as Twin-peaked Rhodopsin (TwR) family. TwR genes form a gene cluster with a set of 13 ORFs conserved in subclade IIIa of SAR11 bacteria. A glutamic acid in the second transmembrane helix, Glu54, is conserved in all of the TwRs. We investigated E54Q mutants of two TwRs and revealed that Glu54 plays critical roles in regulating the RSB pKa, oligomer formation, and the efficient photoreaction of the UV-absorbing state. The discovery of novel TwRs enables us to study the universality and individuality of the characteristics revealed so far in the original TATHIMB and contributes to further studies on mechanisms of unique properties of TwRs.


Subject(s)
Alphaproteobacteria , Glutamic Acid , Rhodopsins, Microbial , Glutamic Acid/chemistry , Glutamic Acid/genetics , Hydrogen-Ion Concentration , Light , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/classification , Rhodopsins, Microbial/genetics , Conserved Sequence , Phylogeny
9.
Microscopy (Oxf) ; 73(1): 14-21, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-37916758

ABSTRACT

High-speed atomic force microscopy (HS-AFM) is now a widely used technique to study the dynamics of single biomolecules and complex structures. In the past, it has mainly been used to capture surface topography as structural analysis, leading to important discoveries not attainable by other methods. Similar to conventional AFM, the scope of HS-AFM was recently expanded to encompass quantities beyond topography, such as the measurement of mechanical properties. This review delves into various methodologies for assessing mechanical properties, ranging from semi-quantitative approaches to precise force measurements and their corresponding sample responses. We will focus on the application to single proteins such as bridging integrator-1, ion channels such as Piezo1, complex structures such as microtubules and supramolecular fibers. In all these examples, the unique combination of quantifiable force application and high spatiotemporal resolution allows to unravel mechanisms that cannot be investigated by conventional means.

10.
Biol Pharm Bull ; 47(1): 334-338, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38143078

ABSTRACT

This study employed high-speed atomic force microscopy to quantitatively analyze the interactions between therapeutic antibodies and Fcγ receptors (FcγRs). Antibodies are essential components of the immune system and are integral to biopharmaceuticals. The focus of this study was on immunoglobulin G molecules, which are crucial for antigen binding via the Fab segments and cytotoxic functions through their Fc portions. We conducted real-time, label-free observations of the interactions of rituximab and mogamulizumab with the recombinant FcγRIIIa and FcγRIIa. The dwell times of FcγR binding were measured at the single-molecule level, which revealed an extended interaction duration of mogamulizumab with FcγRIIIa compared with that of rituximab. This is linked to enhanced antibody-dependent cellular cytotoxicity that is attributed to the absence of the core fucosylation of Fc-linked N-glycan. This study also emphasizes the crucial role of the Fab segments in the interaction with FcγRIIa as well as that with FcγRIIIa. This approach provided quantitative insight into therapeutic antibody interactions and exemplified kinetic proofreading, where cellular discrimination relies on ligand residence times. Observing the dwell times of antibodies on the effector molecules has emerged as a robust indicator of therapeutic antibody efficacy. Ultimately, these findings pave the way for the development of refined therapeutic antibodies with tailored interactions with specific FcγRs. This research contributes to the advancement of biopharmaceutical antibody design and optimizing antibody-based treatments for enhanced efficacy and precision.


Subject(s)
Immunoglobulin G , Receptors, IgG , Receptors, IgG/chemistry , Receptors, IgG/metabolism , Rituximab/pharmacology , Microscopy, Atomic Force , Protein Binding , Immunologic Factors , Carrier Proteins/metabolism
11.
Nat Commun ; 14(1): 5464, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673860

ABSTRACT

The abuse of antibiotics has led to the emergence of multidrug-resistant microbial pathogens, presenting a pressing challenge in global healthcare. Membrane-disrupting antimicrobial peptides (AMPs) combat so-called superbugs via mechanisms different than conventional antibiotics and have good application prospects in medicine, agriculture, and the food industry. However, the mechanism-of-action of AMPs has not been fully characterized at the cellular level due to a lack of high-resolution imaging technologies that can capture cellular-membrane disruption events in the hydrated state. Previously, we reported PepD2M, a de novo-designed AMP with potent and wide-spectrum bactericidal and fungicidal activity. In this study, we use cryo-electron tomography (cryo-ET) and high-speed atomic force microscopy (HS-AFM) to directly visualize the pepD2M-induced disruption of the outer and inner membranes of the Gram-negative bacterium Escherichia coli, and compared with a well-known pore-forming peptide, melittin. Our high-resolution cryo-ET images reveal how pepD2M disrupts the E. coli membrane using a carpet/detergent-like mechanism. Our studies reveal the direct membrane-disrupting consequence of AMPs on the bacterial membrane by cryo-ET, and this information provides critical insights into the mechanisms of this class of antimicrobial agents.


Subject(s)
Antimicrobial Peptides , Electron Microscope Tomography , Escherichia coli , Cell Physiological Phenomena , Anti-Bacterial Agents/pharmacology
12.
Commun Biol ; 6(1): 993, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770645

ABSTRACT

ATAD2 is a non-canonical ATP-dependent histone chaperone and a major cancer target. Despite widespread efforts to design drugs targeting the ATAD2 bromodomain, little is known about the overall structural organization and regulation of ATAD2. Here, we present the 3.1 Å cryo-EM structure of human ATAD2 in the ATP state, showing a shallow hexameric spiral that binds a peptide substrate at the central pore. The spiral conformation is locked by an N-terminal linker domain (LD) that wedges between the seam subunits, thus limiting ATP-dependent symmetry breaking of the AAA+ ring. In contrast, structures of the ATAD2-histone H3/H4 complex show the LD undocked from the seam, suggesting that H3/H4 binding unlocks the AAA+ spiral by allosterically releasing the LD. These findings, together with the discovery of an inter-subunit signaling mechanism, reveal a unique regulatory mechanism for ATAD2 and lay the foundation for developing new ATAD2 inhibitors.


Subject(s)
DNA-Binding Proteins , Histone Chaperones , Humans , Adenosine Triphosphate , ATPases Associated with Diverse Cellular Activities/chemistry , ATPases Associated with Diverse Cellular Activities/metabolism , DNA-Binding Proteins/metabolism , Histone Chaperones/metabolism , Histones/metabolism
13.
Int J Mol Sci ; 24(16)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37629048

ABSTRACT

Multidomain proteins can exhibit sophisticated functions based on cooperative interactions and allosteric regulation through spatial rearrangements of the multiple domains. This study explored the potential of using multidomain proteins as a basis for Förster resonance energy transfer (FRET) biosensors, focusing on protein disulfide isomerase (PDI) as a representative example. PDI, a well-studied multidomain protein, undergoes redox-dependent conformational changes, enabling the exposure of a hydrophobic surface extending across the b' and a' domains that serves as the primary binding site for substrates. Taking advantage of the dynamic domain rearrangements of PDI, we developed FRET-based biosensors by fusing the b' and a' domains of thermophilic fungal PDI with fluorescent proteins as the FRET acceptor and donor, respectively. Both experimental and computational approaches were used to characterize FRET efficiency in different redox states. In vitro and in vivo evaluations demonstrated higher FRET efficiency of this biosensor in the oxidized form, reflecting the domain rearrangement and its responsiveness to intracellular redox environments. This novel approach of exploiting redox-dependent domain dynamics in multidomain proteins offers promising opportunities for designing innovative FRET-based biosensors with potential applications in studying cellular redox regulation and beyond.


Subject(s)
Fluorescence Resonance Energy Transfer , Protein Disulfide-Isomerases , Protein Disulfide-Isomerases/genetics , Allosteric Regulation , Binding Sites , Oxidation-Reduction
14.
Angew Chem Int Ed Engl ; 62(40): e202308565, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37592736

ABSTRACT

19 F magnetic resonance imaging (MRI) is a powerful molecular imaging technique that enables high-resolution imaging of deep tissues without background signal interference. However, the use of nanoparticles (NPs) as 19 F MRI probes has been limited by the immediate trapping and accumulation of stiff NPs, typically of around 100 nm in size, in the mononuclear phagocyte system, particularly in the liver. To address this issue, elastic nanomaterials have emerged as promising candidates for improving delivery efficacy in vivo. Nevertheless, the impact of elasticity on NP elimination has remained unclear due to the lack of suitable probes for real-time and long-term monitoring. In this study, we present the development of perfluorocarbon-encapsulated polymer NPs as a novel 19 F MRI contrast agent, with the aim of suppressing long-term accumulation. The polymer NPs have high elasticity and exhibit robust sensitivity in 19 F MRI imaging. Importantly, our 19 F MRI data demonstrate a gradual decline in the signal intensity of the polymer NPs after administration, which contrasts starkly with the behavior observed for stiff silica NPs. This innovative polymer-coated NP system represents a groundbreaking nanomaterial that successfully overcomes the challenges associated with long-term accumulation, while enabling tracking of biodistribution over extended periods.


Subject(s)
Nanoparticles , Polymers , Tissue Distribution , Magnetic Resonance Imaging/methods , Contrast Media
15.
EMBO Rep ; 24(11): e56864, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37575008

ABSTRACT

Kinesin-driven intracellular transport is essential for various cell biological events and thus plays a crucial role in many pathological processes. However, little is known about the molecular basis of the specific and dynamic cargo-binding mechanism of kinesins. Here, an integrated structural analysis of the KIF3/KAP3 and KIF3/KAP3-APC complexes unveils the mechanism by which KIF3/KAP3 can dynamically grasp APC in a two-step manner, which suggests kinesin-cargo recognition dynamics composed of cargo loading, locking, and release. Our finding is the first demonstration of the two-step cargo recognition and stabilization mechanism of kinesins, which provides novel insights into the intracellular trafficking machinery.


Subject(s)
Cell Communication , Kinesins , Kinesins/metabolism , Biological Transport , Microtubules/metabolism
16.
JACS Au ; 3(7): 1864-1875, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37502146

ABSTRACT

The intracellular phosphatase domain of the receptor-type protein tyrosine phosphatase alpha (PTPRA) is known to regulate various signaling pathways related to cell adhesion through c-Src kinase activation. In contrast, the functional significance of its relatively short, intrinsically disordered, and heavily glycosylated ectodomain remains unclear. Through detailed mass spectrometry analyses of a combination of protease and glycosidase digests, we now provide the first experimental evidence for its site-specific glycosylation pattern. This includes the occurrence of O-glycan at the N-glycosylation sequon among the more than 30 O-glycosylation sites confidently identified beside the 7 N-glycosylation sites. The closely spaced N- and O-glycans appear to have mutually limited the extent of further galactosylation and sialylation. An immature smaller form of full-length PTPRA was found to be deficient in O-glycosylation, most likely due to failure to transit the Golgi. N-glycosylation, on the other hand, is dispensable for cell surface expression and contributes less than the extensive O-glycosylation to the overall solution structure of the ectodomain. The glycosylation information is combined with the overall structural features of the ectodomain derived from small-angle X-ray scattering and high-speed atomic force microscopy monitoring to establish a dynamic structural model of the densely glycosylated PTPRA ectodomain. The observed high structural flexibility, as manifested by continuous transitioning from fully to partially extended and fold-back conformations, suggests that the receptor-type phosphatase is anchored to the membrane and kept mostly at a monomeric state through an ectodomain shaped and fully shielded by glycosylation.

17.
Soft Matter ; 19(27): 5068-5075, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37259769

ABSTRACT

Although the degradation of colloidal particles is one of the most attractive phenomena in the field of biological and environmental science, the degradation mechanism of single particles remains to be elucidated. In this study, in order to clarify the impact of the structure of a single particle on the oxidative degradation processes, thermoresponsive colloidal particles with chemical cleavage points were synthesized as a model, and their degradation behavior was evaluated using high-speed atomic force microscopy (HS-AFM) as well as conventional scattering techniques. The real-time observation of single-particle degradation revealed that the degradation behavior of microgels is governed by their inhomogeneous nanostructure, which originates from the polymerization method and their hydrophilicity. Our findings can be expected to advance the design of carriers for drug-delivery and the understanding of the formation processes of micro (nano)plastics.

18.
Nat Chem ; 15(7): 922-929, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37264101

ABSTRACT

Although the principles of noncovalent bonding are well understood and form the basis for the syntheses of many intricate supramolecular structures, supramolecular noncovalent synthesis cannot yet achieve the levels of precision and complexity that are attainable in organic and/or macromolecular covalent synthesis. Here we show the stepwise synthesis of block supramolecular polymers from metal-porphyrin derivatives (in which the metal centre is Zn, Cu or Ni) functionalized with fluorinated alkyl chains. These monomers first undergo a one-dimensional supramolecular polymerization and cyclization process to form a toroidal structure. Subsequently, successive secondary nucleation, elongation and cyclization steps result in two-dimensional assemblies with concentric toroidal morphologies. The site selectivity endowed by the fluorinated chains, reminiscent of regioselectivity in covalent synthesis, enables the precise control of the compositions and sequences of the supramolecular structures, as demonstrated by the synthesis of several triblock supramolecular terpolymers.

19.
Chem Commun (Camb) ; 59(33): 4974-4977, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37016952

ABSTRACT

Here we report the development of an equimolar conjugate of a metal-organic cage (MOC) and DNA (MOC-DNA). Several MOC-DNA conjugates were assembled into a programmed structure by coordinating with a template DNA having a complementary base sequence. Moreover, conjugation with the MOC drastically enhanced the permeability of DNA through the lipid bilayer, presenting great potential as a drug delivery system.


Subject(s)
DNA , Lipid Bilayers , DNA/chemistry , Nanotechnology , Metals , Base Sequence
20.
Proc Natl Acad Sci U S A ; 120(18): e2302047120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37094146

ABSTRACT

Cadherin EGF LAG seven-pass G-type receptors (CELSR) cadherins, members of the cadherin superfamily, and adhesion G-protein-coupled receptors, play a vital role in cell-cell adhesion. The mutual binding of the extracellular domains (ectodomains) of CELSR cadherins between cells is crucial for tissue formation, including the establishment of planar cell polarity, which directs the proper patterning of cells. CELSR cadherins possess nine cadherin ectodomains (EC1-EC9) and noncadherin ectodomains. However, the structural and functional mechanisms of the binding mode of CELSR cadherins have not been determined. In this study, we investigated the binding mode of CELSR cadherins using single-molecule fluorescence microscopy, high-speed atomic force microscopy (HS-AFM), and bead aggregation assay. The fluorescence microscopy analysis results indicated that the trans-dimer of the CELSR cadherin constitutes the essential adhesive unit between cells. HS-AFM analysis and bead aggregation assay results demonstrated that EC1-EC8 entirely overlap and twist to form antiparallel dimer conformations and that the binding of EC1-EC4 is sufficient to sustain bead aggregation. The interaction mechanism of CELSR cadherin may elucidate the variation of the binding mechanism within the cadherin superfamily and physiological role of CELSR cadherins in relation to planar cell polarity.


Subject(s)
Cadherins , ErbB Receptors , Cadherins/metabolism , Microscopy, Atomic Force , Cell Adhesion/physiology , Receptors, G-Protein-Coupled/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...