Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(11): e0293317, 2023.
Article in English | MEDLINE | ID: mdl-37917645

ABSTRACT

Domestic production of controlled-release, compost-based, and microbe-enhanced fertilizers is being expanded in the U.S. as a part of rural development. Sugarcane mill mud is a sterilized (≈90°C) agricultural byproduct in surplus that has received interests as a soil amendment in several Southern states, because of its high phosphorus and organic carbon contents. Addition of mill mud to sandy loam significantly increased the nodule formation compared to fertilized and unfertilized controls. Mill mud addition also resulted in pod yields similar to the fertilized control. Though not found in mill mud itself, mill mud additions correlated with an increase in soil Rhizobia as determined by deep 16S rRNA gene sequencing. We hypothesize that Firmicutes in sterilized mill mud induced Rhizobia that in turn enhanced soybean (Glycine max) growth. Collectively, mill mud enhanced the plant growth promoting bacteria when applied to a silt loam, although the relative influence of mill mud-derived bacteria, organic carbon, and nutrients is yet to be determined.


Subject(s)
Rhizobium , Saccharum , Soil , Glycine max/microbiology , Sand , Symbiosis , RNA, Ribosomal, 16S/genetics , Carbon
2.
Microbiol Resour Announc ; 12(11): e0056823, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37846981

ABSTRACT

The genomes of 11 bacteria and 3 archaea were assembled from metagenomic DNA extracted from sugarcane mill mud. These metagenome-assembled genomes ranged from 1.79 to 6.45 Mb, with 2,263 to 5,551 predicted proteins, 80.65% to 100% genome completeness, and 43.19% to 68.02% G+C content.

3.
PLoS One ; 17(8): e0272013, 2022.
Article in English | MEDLINE | ID: mdl-35972931

ABSTRACT

Sugarcane mill mud/filter cake is an activated sludge-like byproduct from the clarifier of a raw sugar production factory, where cane juice is heated to ≈90°C for 1-2 hr, after the removal of bagasse. Mill mud is enriched with organic carbon, nitrogen, and nutrient minerals; no prior report utilized 16S rRNA gene sequencing to characterize the microbial composition. Mill mud could be applied to agricultural fields as biofertilizer to replace or supplement chemical fertilizers, and as bio-stimulant to replenish microorganisms and organic carbon depleted by erosion and post-harvest field burning. However, mill mud has historically caused waste management challenges in the United States. This study reports on the chemical and microbial (16S rRNA) characteristics for mill muds of diverse origin and ages. Chemical signature (high phosphorus) distinguished mill mud from bagasse (high carbon to nitrogen (C/N) ratio) and soil (high pH) samples of diverse geographical/environmental origins. Bacterial alpha diversity of all sample types (mill mud, bagasse, and soil) was inversely correlated with C/N. Firmicutes dominated the microbial composition of fresh byproducts (mill mud and bagasse) as-produced within the operating factory. Upon aging and environmental exposure, the microbial community of the byproducts diversified to resemble that of soils, and became dominated by varying proportions of other phyla such as Acidobacteria, Chloroflexi, and Planctomyces. In summary, chemical properties allowed grouping of sample types (mill mud, bagasse, and soil-like), and microbial diversity analyses visualized aging caused by outdoor exposures including soil amendment and composting. Results suggest that a transient turnover of microbiome by amendments shifts towards more resilient population governed by the chemistry of bulk soil.


Subject(s)
Saccharum , Soil , Carbon/analysis , Nitrogen/analysis , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Soil Microbiology
4.
Sci Total Environ ; 845: 157219, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35810894

ABSTRACT

Sequestration of soil carbon is considered as a promising strategy for mitigating climate change. As a source of recalcitrant carbon, biochar has been widely used in agricultural soil as a mean of stabilizing soil organic carbon (SOC). However, limited reports focused on the changes of biochar itself in soil when compared with the bulk SOC after biochar addition. To explore how environmental conditions influence the stability of biochar, isolated straw-derived biochar particles (0.25-2 mm) were embedded in an Anthrosol for 12 months under varied environmental conditions of incubation temperature (15 °C, 25 °C and 35 °C) and moisture (60 % and 150 % of saturated water content). Within the early 1 month of incubation, pH and inorganic nitrogen contents of biochar changed significantly as a function of moisture and temperature (p < 0.01), whereas water extractable organic carbon (WEOC) content was only influenced by moisture content (p < 0.01). The highest temperature (35 °C) and saturated water content (150 %) induced the largest aging response reflected by increases in oxygen-containing surface functional groups of biochar, including C-O-C (51.35 % - 149 %) and N-C-O (65.55 % - 119 %). Pearson correlation and RDA analysis indicated that the chemical properties of biochar contribute more to the carbon-source utilization properties of biochar colonized microbial community within 1 month of incubation, while the bulk soil chemical properties (pH, DOC, MBC and NO3-) had a higher contribution until the end of incubation. Moisture rather than temperature was the dominant factor in regulating the functional diversity of biochar colonized microbial community.


Subject(s)
Carbon , Soil , Carbon/chemistry , Charcoal/chemistry , Soil/chemistry , Temperature , Water/chemistry
5.
Ecotoxicol Environ Saf ; 208: 111675, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396007

ABSTRACT

Metal bioavailability controls its behaviors in soil-plant system, especially involved in biochar amendment. This study compared a rhizospheric pore-water extraction against a BCR sequential extraction method to understand cadmium (Cd) bioavailability in two typical Chinese soils. Soils were spiked with five levels of Cd (CdCl2) and remediated with 3% corn-straw derived biochar. After 60 days of lettuce growth, Cd accumulation and enzyme activities in tissues were analyzed. Results showed that biochar increased soil properties (pH, CEC and SOM) compared to un-amended soils, but decreased contents of bioavailable Cd in soil pore-water (Cdpore-water) and BCR extracted Cd (CdFi+Fii). Contents of Cdpore-water were lower in yellow-brown soils than that in red soils. Pearson analysis showed that bioavailable Cd is negatively correlated with soil pH and CEC (p < 0.05). Cd accumulation in lettuce roots and leaves both were decreased by biochar addition, and the established linear equations proved that soil Cdpore-water is the best predictor for Cd accumulation in lettuce roots (r2 = 0.964) and in leaves (r2 = 0.953), followed by CdFi+Fii. Transfer factor (TF) values of Cd from roots to leaves were lower than 1, and slightly better correlated with soil Cdpore-water (r = -0.674, p < 0.01) than CdFi+Fii (r = -0.615, p < 0.01). Aggregated boosted tree (ABT) analyses indicated that soil properties together with Cdpore-water contribute more than 50% to root enzyme activities. Collectively, soil Cdpore-water is a promising predictor of Cd bioavailability, accumulation and toxicity in soil-plant system with biochar addition.


Subject(s)
Bioaccumulation/drug effects , Cadmium/toxicity , Charcoal/chemistry , Lactuca/drug effects , Soil Pollutants/toxicity , Biological Availability , Biological Transport , Cadmium/metabolism , Lactuca/metabolism , Models, Theoretical , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Stems/chemistry , Rhizosphere , Soil/chemistry , Soil Pollutants/metabolism , Water/chemistry , Zea mays/chemistry
6.
PLoS One ; 15(7): e0234509, 2020.
Article in English | MEDLINE | ID: mdl-32663216

ABSTRACT

Polyphenols and other potential health-promoting components of sorghum (Sorghum bicolor (L.) Moench) drove its recent growth in the U.S. consumer food industry. Linear sweep (cyclic voltammetry, CV) and differential (cyclic differential pulse) voltammetry methods were developed to detect target polyphenols and amino acids in sweet sorghum juice without interference from the dominant secondary (trans-aconitic acid) and primary (sucrose) metabolites. Of 24 cultivars investigated, No.5 Gambela showed the highest electron-donating capacity, as indicated by the highest peak area, height, and peak anodic potential. Pearson's correlation analysis indicated the contribution of polyphenols (rather than amino acids) on CV voltammograms of juice samples. The Eh-pH values of 173 sweet sorghum juice samples collected in 2017 aligned with quercetin model polyphenol. Accumulation of quercetin-like polyphenols in No.5 Gambela could offer antioxidant-rich juice for conversion to edible syrup as well as an increased tolerance against a recently emerged pest, sugarcane aphid [(Melanaphis sacchari (Zehntner)].


Subject(s)
Polyphenols/analysis , Sorghum/metabolism , Edible Grain , Polyphenols/chemistry , Saccharum/chemistry , Taste
7.
Sci Total Environ ; 726: 138562, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32315855

ABSTRACT

Knowledge gap exists to understand the soil CO2 emission and microbial group response to substrates of whole plant residues and derived biochar. We used 13C-labelled substrates (rice straw, roots and biochar) to track influences of their decomposition on soil priming effect (PE) and phospholipid fatty acid (PLFA) composition during one-year incubation. Organic substrates at 1% (w/w) level increased soil pH, available nitrogen (AN) and available phosphorus (AP), especially during the first 45 days of incubation. After incubation, 44% of the added straw was mineralized to 13CO2, followed by roots (~35%) and biochar (~5%). Straw and roots amendment caused positive PE during 4-360 day of the incubation, where a lowest value of 41.9 mg C kg-1 was observed. Biochar amendment caused negative PE during 56-150 day of the incubation, where a largest value of -99.0 mg C kg-1 was observed. Analysis of 13C-labelled PLFA enabled the differentiation of microbial groups during substrates utilization. Gram positive bacteria (G+) and general bacteria groups were dominated in co-metabolizing both the native soil organic carbon (SOC) and substrates after straw and roots amendment. Gram negative bacteria (G-), especially identified by PLFA biomarkers cy17:0 and cy19:0, preferentially utilizes the 13C-labelled biochar but not promoting soil priming effect. Soil pH, SOC, AN and AP all explained changes of total and 13C-labelled PLFA contents (>75%, p < .05). Evidences showed that biochar is best in sequestering soil C pool, followed by straw and roots, and soil microbial groups in utilization of organic substances mediated SOC mineralization.


Subject(s)
Microbiota , Oryza , Carbon , Charcoal , Soil , Soil Microbiology
8.
Environ Monit Assess ; 192(5): 309, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32328811

ABSTRACT

The distribution and composition of organic pollutants in sediment are affected by the source and regional environment. To understand the characteristics and risk of polybrominated diphenyl ethers (PBDEs) in the area around Taihu Lake, composite sediment samples (n = 41) were collected in rivers around Taihu Lake to explore the level, spatial distribution, and source of PBDEs. The results showed that the most abundant BDE congener in river sediment was BDE209, followed by BDE99 and BDE47, with median values of 48.7, 2.17, and 1.52 ng g-1, respectively. Concentrations of PBDEs in sediments from northern rivers were significantly higher than those from other areas, but the overall risk was at a moderate-lower level compared with research results in other references. Results of principle component analysis (PCA) and source characteristics analysis revealed that most of PBDEs in river sediments around Taihu Lake were mixture of multiple sources, which mainly originated from atmospheric deposition, industrial wastewater, and municipal sewage. TOC showed good correlations with most PBDEs, which implied that PBDE components were influenced by sediment organic matter. Meanwhile, the risk of PBDEs in river sediments in this study area is a moderate-lower level.


Subject(s)
Environmental Monitoring , Geologic Sediments , Halogenated Diphenyl Ethers , Risk Assessment , Rivers , China , Geologic Sediments/chemistry , Halogenated Diphenyl Ethers/analysis , Water Pollutants, Chemical/analysis
9.
J Agric Food Chem ; 68(46): 12856-12869, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-32155055

ABSTRACT

Heavy metals in agricultural soils exist in diverse dissolved (free cations and complexed species of positive, neutral, or negative charges), particulate (sorbed, structural, and coprecipitated), and colloidal (micro- and nanometer-sized particles) species. The fate of different heavy metal species is controlled by the master variables: pH (solubility), ionic strength (activity and charge-shielding), and dissolved organic carbon (complexation). In the rhizosphere, chemical speciation controls toxicokinetics (uptake and transport of metals by plants) while toxicodynamics (interaction between the plant and absorbed species) drives the toxicity outcome. Based on the critical review, the authors recommend omics and data mining techniques to link discrete knowledge bases from the speciation dynamics, soil microbiome, and plant transporter/gene expression relevant to homeostasis conditions of modern agriculture. Such efforts could offer a disruptive application tool to improve and sustain plant tolerance, food safety, and environmental quality.


Subject(s)
Metals, Heavy/metabolism , Plants/metabolism , Soil Pollutants/metabolism , Biological Transport , Metals, Heavy/chemistry , Metals, Heavy/toxicity , Soil/chemistry , Soil Pollutants/chemistry , Soil Pollutants/toxicity , Toxicokinetics
10.
Article in English | MEDLINE | ID: mdl-32013027

ABSTRACT

Remediation of soil heavy metal by biochar has been extensively studied. However, few studies focused on the role of biochar on the co-immobilization of cadmium (Cd(II)) and arsenate (As(V)) and related soil nutrient availability. Remediation tests were conducted with three types of pristine and ferric trichloride (FeCl3) modified biochar (rice, wheat, and corn straw biochar) in Cd-As co-contaminated soil, with application rates of 1, 5, and 10% (w/w) and the incubation of 1, 7, 10, and 15 days. Using TCLP (Toxicity Characteristic Leaching Procedure) method, 10% of FeCl3 modified corn-straw derived biochar (FCB) had the highest immobilization efficiency of Cd(II) (63.21%) and As(V) (95.10%) after 10 days of the incubation. Iron-modified biochar immobilized higher fractions of water-soluble (F1) and surface-absorbed (F2) metal fractions than pristine biochar. For FCB amendment, Cd was mostly presented in the organic matter (OM) and sulfides associated (F4) and residual (F5) fractions (88.52%), as was found in the Fe-Al (oxides and hydroxides) (F3), F4, and F5 fractions (75.87%). FCB amendment increased soil pH values and available iron contents (p < 0.05), while no changes in soil available phosphorus content (p > 0.05). This study showed that FCB application reduces the environmental mobility of metals in Cd-As contaminated soil, while it also increases soil pH and available nutrient mobility, improving soil environmental quality and reducing remediation costs.


Subject(s)
Arsenic/isolation & purification , Cadmium/isolation & purification , Charcoal , Iron , Soil Pollutants/isolation & purification , Soil
11.
J Agric Food Chem ; 68(46): 12978-12983, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-32043892

ABSTRACT

Sorghum (Sorghum bicolor (L.) Moench) produces a range of defense phytochemicals containing a quinone core structure: sorgoleone allelochemical, flavonoid phytoalexins, and a broad spectrum of polyphenols. Those phytochemicals react with the components of cellular and agroecosystems to form stable semiquinone radicals engaging in different proton-coupled electron transfer reactions. This unique redox reactivity of plant phenolics could be used to develop bioactive food ingredients and green pesticides. To achieve those application goals, chemical phenotyping methods sensitive to quinone-semiquinone-dihydroxybenzene redox cycles (e.g., electrochemical conversion with fluorescence detection) are in demand. Chemometrics-based fingerprinting tools could facilitate on-farm screening of target traits for breeding innovations.


Subject(s)
Phytochemicals/metabolism , Sorghum/metabolism , Benzoquinones/chemistry , Benzoquinones/metabolism , Electron Transport , Pheromones/chemistry , Pheromones/metabolism , Phytochemicals/chemistry , Polyphenols/chemistry , Polyphenols/metabolism , Protons , Sorghum/chemistry
12.
Ecotoxicol Environ Saf ; 189: 110045, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31816499

ABSTRACT

Phytotoxicity of cadmium (Cd) and its trophic transfer along a terrestrial food chain have been extensively investigated. However, few studies focused on the role of amendments on the trophic transfer of Cd and related mineral nutrients. In a 60-day pot experiment, soil Cd availability, accumulation of Cd, mineral nutrients (Ca and Si) in lettuce, and subsequent trophic transfer along the lettuce-snail system were investigated with or without 3% (w/w) soil amendment (biochar or micro-hydroxyapatite, µHAP). Soil CaCl2 extractable Cd (CdCaCl2) contents decreased by both amendments. µHAP amended soil increased the Freundlich sorption capacity of Cd2+ to a greater extent (15.9 mmol/kg) than biochar (12.6 mmol/kg). Cd, Ca and Si accumulation in lettuce tissues (roots and shoots) varied with amendment species and soil Cd levels. Linear regression analysis showed that root Cd contents are negatively correlated with root Ca and Si contents (r2 = 0.96, p < 0.05). But no significant correlation between shoot Cd and lettuce Ca and Si contents was found (p > 0.05). After 15 days snail feeding, nearly 90% content of Cd was found in snail viscera, while nearly 95% content of Ca was found in snail shells. Contents of Si distributed equally in snail tissues. Biomagnification of Cd, Ca and Si (TF > 1) was found in lettuce shoot - snail viscera system. Opposite tendency of TF variation between Cd and nutrient elements (Ca and Si) from shoots to snail tissues indicated that µHAP, rather than biochar, amendment is applicable to remediate soil Cd contamination in our study.


Subject(s)
Cadmium/analysis , Charcoal/chemistry , Lactuca/drug effects , Minerals/metabolism , Soil Pollutants/analysis , Soil/chemistry , Animals , Bioaccumulation , Cadmium/metabolism , Calcium/metabolism , Food Chain , Lactuca/metabolism , Silicon/metabolism , Snails/drug effects , Snails/metabolism , Soil Pollutants/metabolism
13.
ACS Omega ; 4(24): 20519-20529, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31858036

ABSTRACT

The sugary juice from sweet sorghum [Sorghum bicolor (L.) Moench] stalks can be used to produce edible syrup, biofuels, or bio-based chemical feedstock. The current cultivars are highly susceptible to damage from sugarcane aphids [Melanaphis sacchari (Zehntner)], but development of new cultivars is hindered by a lack of rapid analytical methods to screen for juice quality traits. The mechanism of aphid resistance/tolerance is also largely unknown, though the importance of defense phytochemicals has been suggested. The purpose of this study was to develop low-cost methods sensitive to fluorescent fingerprints in sweet sorghum juice, which is a complex mixture of saccharides, carboxylates, polyphenols, and metal ions. Of primary juice components, tryptophan and trans-aconitic acid were the highest intensity contributors to the overall fluorescence and UV/visible absorbance, respectively, while tyrosine and polyphenols contributed to a less extent. In a test of 24 sweet sorghum cultivars, tryptophan and tyrosine contents were the highest in the aphid-susceptible hybrid N109A x Chinese, while sucrose, trans-aconitic acid, and polyphenols were the highest in the resistant line No. 5 Gambela. This suggests that the accumulation of carboxylate (trans-aconitic acid) and polyphenolic secondary products in No. 5 Gambela may contribute to its aphid resistance, thus allowing it to maintain sucrose production. Rapid detection of these chemical signatures could be used to prescreen the breeding material for potential resistance and juice quality traits, without analytical separation required for metabolomics.

14.
Food Chem ; 298: 125036, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31260988

ABSTRACT

Colour removal in raw sugar remains a crucial but expensive process in the sugar industry. In this report, permanganate (MnO4-) oxidation is explored as an alternative method to remove colour-inducing constituents in sugar cane juice/produced raw sugar. Experiments indicated alum, an inexpensive coagulant, was able to remove residual Mn species produced after MnO4- treatment. The optimal dosages of MnO4- and alum for decoloration of a 17 wt% raw sugar solution (70 °C) was found to be 4 mM and 2 g/l, respectively. Removal of colour and Mn removal were further improved at ambient temperature. Sucrose, the major component of raw sugar, was not affected during treatment with MnO4- and alum. Two-phase kinetic behaviour for MnO4- oxidation was observed, where an initial rapid oxidation phase is followed by a second slower reaction phase. These results suggest permanganate oxidation is a promising alternative for accomplishing the decoloration of raw sugar solutions.


Subject(s)
Beverages , Potassium Permanganate/chemistry , Saccharum/chemistry , Sucrose/chemistry , Color , Dietary Sucrose/chemistry , Food-Processing Industry/methods , Kinetics , Manganese/chemistry , Oxidation-Reduction
15.
J Environ Qual ; 48(3): 717-726, 2019 May.
Article in English | MEDLINE | ID: mdl-31180424

ABSTRACT

Although biochar is considered a promising C sequestration agent, long-term field experiments are lacking to assess the effects of biochar addition on the soil organic C (SOC) and microbial community. Corn ( L.) straw feedstock and biochar were applied to a sandy loam soil for three consecutive years to investigate the SOC distribution within various fractionations, responses of soil microbial biomass, enzyme activity, and community structure. In comparison with straw amendment, higher levels of biochar (6.0 and 12 t ha) significantly increased soil pH, SOC, total N (TN), available P (AP) and available K. Biochar (12 t ha) decreased the fulvic acid fraction by 15.9% and increased the free-light C (FLC), intra-aggregate, and organomineral fractionations by 6.05-, 2.52-, and 0.22-fold, respectively. There was no significant influence of straw or biochar application on the soil microbial biomass C (MBC) contents or the activities of soil enzymes. A phospholipid fatty acids assay suggested that 6.0 t ha straw slightly enriched the abundance of Actinobacteria in soil, whereas biochar (6.0 and 12 t ha) mainly promoted the growth of Gram-positive bacteria, fungi, and general bacteria groups. Canonical correspondence analysis indicated that soil pH, SOC, TN, AP, FLC, and fulvic acid significantly influence the structure of soil microbial community ( < -0.50, < 0.05 for both MBC and the ratio of MBC to SOC; > 0.50 for microbial biomass N, basal respiration [BR], and the ratio of BR through incubation to MBC). Established quantitative relationships provided evidence for understanding the effects of biochar amendment on soil environment after a long-term field application.


Subject(s)
Carbon , Soil , Charcoal , Soil Microbiology
16.
Sci Rep ; 9(1): 370, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30674945

ABSTRACT

Sugarcane aphid [(Melanaphis sacchari (Zehntner)] emerged in the United States in 2013 as a new pest infesting sorghum (Sorghum bicolor (L.) Moench). Aphid population and plant damage are assessed by field scouting with mean comparison tests or repeated regression analysis. Because of inherently large replication errors from the field and interactions between treatments, new data analytics are needed to rapidly visualize the pest emergence trend and its impact on plant damage. This study utilized variable importance in the projection (VIP) and regression vector statistics of partial least squares (PLS) modeling to deduce directional relationships between aphid population and leaf damage from biweekly field monitoring (independent variable) and chemical composition (dependent variable) of 24 sweet sorghum cultivars. Regardless of environment, aphid population increase preceded the maximum damage rating. Greater damage rating at earlier growth stage in 2015 than 2016 led to an overall higher damage rating in 2015 than 2016. This trend in damage coincided with higher concentrations of trans-aconitic acid and polyphenolic secondary products in stem juice in 2016 than 2015, at the expense of primary sugar production. Developed rapid data analytics could be extended to link phenotypes to perturbation parameters (e.g., cultivar and growth stage), enabling integrated pest management.


Subject(s)
Aphids , Plant Diseases/parasitology , Sorghum/parasitology , Analysis of Variance , Animals , Data Interpretation, Statistical , Phenotype , Plant Leaves/parasitology , Population Dynamics
17.
Sci Total Environ ; 649: 801-807, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30176490

ABSTRACT

Cadmium (Cd) trophic transfer along the soil-lettuce-snail food chain was investigated using the root bags-based pot experiments. Two amendments (corn straw biochar and micro-hydroxyapatite (µHAP)) were investigated on Cd (0, 2.5, and 5 mg/kg soil) availability in soils, chemical distribution in plant cells and accumulation in snails. After 60 days, both the CaCl2 extractable Cd in rhizosphere soil (CdCaCl2,rhizo) and Cd accumulation in lettuce decreased with amendments addition. Biochar had a great capacity to reduce both Cd contents and toxicity-sensitive associated Cd (CdFi+Fii) percentages in lettuce roots at 2.5 mg/kg Cd contaminated soil; while µHAP generates a higher reduction in both Cd contents and chain transfer associated Cd (CdFi+Fii+Fiii) percentages in lettuce shoots at 5 mg/kg Cd contaminated soil. Linear regression showed that both contents of root CdFi+Fii and shoot CdFi+Fii+Fiii are better correlated with the CdCaCl2,rhizo (R2 > 0.70, p < 0.01). After 15 days feeding, almost 90% content of Cd accumulated in snail viscera. µHAP had a higher reduction in snail soft tissues Cd accumulation than biochar. Distributions of Cd in snail tissues are significantly correlated with CdFi+Fii+Fiii in shoots (viscera R2 = 0.835; soft tissue R2 = 0.771). Established quantitative relationships could be used to predict the bioavailability and transfer of Cd in terrestrial food chain in the presence of amendments.


Subject(s)
Cadmium Chloride/metabolism , Cadmium/metabolism , Food Chain , Lactuca/metabolism , Snails/metabolism , Soil Pollutants/metabolism , Soil/chemistry , Animals , Cadmium/analysis , Cadmium Chloride/analysis , Lactuca/growth & development , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Soil Pollutants/analysis
18.
Chemosphere ; 211: 81-88, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30071439

ABSTRACT

Metal bioavailability at root plasma membrane surfaces and chemical forms within cells putatively controls the trophic transfer processes. Accumulation and distribution of Cu or Cd in lettuce were investigated as a function of lettuce leaf aging through soil-solution culture experiments. Metal contents in snail tissues were examined after fed on young (interior) or old (exterior) age leaves for 15d, respectively. In both roots and leaves, Cu accumulation was higher than Cd by 3-90 fold. Regardless of 9.42 µmoL/L CuCl2 exposure, young leaves accumulated more Cu than old leaves, while higher Cu contents are found in snail tissues fed on old leaves. Opposite trends were observed for Cd. Copper as an essential element had a higher transfer factor (TF) than the non-essential element Cd in biomagnification from leaf to snail. Reasons involved in metal chemical forms within leaf cells, where higher percentages of toxicity and migration associated metal (Fi: inorganic form, Fii: water-soluble form and Fiii: pectate- and protein-integrated form) are found for Cu in old leaves (88.3-91.6%) and Cd in young leaves (86.8-94.5%). Metal activities at root plasma membrane surfaces ({M2+}0) and chemical forms in Fi + Fii + Fiii linearly correlated with metal accumulation in lettuce and snail tissues (R2 > 0.900, p < 0.001 for snails fed on old leaves). Our study incorporated both the chemical form approach and {M2+}0 into evaluating the trophic bioavailability of different metals along the lettuce-snail chain, which is important for mechanistic understanding of metal behaviors in the ecosystem.


Subject(s)
Cadmium/chemistry , Copper/chemistry , Lactuca/drug effects , Soil Pollutants/chemistry , Animals , Food Chain , Snails , Soil Pollutants/analysis
19.
J Agric Food Chem ; 66(26): 6609-6618, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29281882

ABSTRACT

The interactions of nanoparticles (NPs) with biochar and soil components may substantially influence NP availability and toxicity to biota. In the present study, earthworms ( Eisenia fetida) were exposed for 28 days to a residential or agricultural soil amended with 0-2000 mg of CeO2 NP/kg and with biochar (produced by the pyrolysis of pecan shells at 350 and 600 °C) at various application rates [0-5% (w/w)]. After 28 days, earthworms were depurated and analyzed for Ce content, moisture content, and lipid peroxidation. The results showed minimal toxicity to the worms; however, biochar (350 or 600 °C) was the dominant factor, accounting for 94 and 84% of the variance for the moisture content and lipid peroxidation, respectively, in the exposed earthworms. For both soils with 1000 mg of CeO2/kg at 600 °C, biochar significantly decreased the accumulation of Ce in the worm tissues. Amendment with 350 °C biochar had mixed responses on Ce uptake. Analysis by micro X-ray fluorescence (µ-XRF) and micro X-ray absorption near edge structure (µ-XANES) was used to evaluate Ce localization, speciation, and persistence in CeO2- and biochar-exposed earthworms after depuration for 12, 48, and 72 h. Earthworms from the 500 mg of CeO2/kg and 0% biochar treatments eliminated most Ce after a 48 h depuration period. However, in the same treatment and with 5% BC-600 (biochar pyrolysis temperature of 600 °C), ingested biochar fragments (∼50 µm) with Ce adsorbed to the surfaces were retained in the gut after 72 h. Additionally, Ce remained in earthworms from the 2000 mg of CeO2/kg and 5% biochar treatments after depuration for 48 h. Analysis by µ-XANES showed that, within the earthworm tissues, Ce remained predominantly as Ce4+O2, with only few regions (2-3 µm2) where it was found in the reduced form (Ce3+). The present findings highlight that soil and biochar properties have a significant influence in the internalization of CeO2 NPs in earthworms; such interactions need to be considered when estimating NP fate and effects in the environment.


Subject(s)
Cerium/metabolism , Charcoal/metabolism , Oligochaeta/chemistry , Oligochaeta/metabolism , Soil Pollutants/metabolism , Animals , Cerium/analysis , Charcoal/analysis , Metal Nanoparticles/analysis , Soil/chemistry , Soil Pollutants/analysis , Spectrometry, X-Ray Emission , Synchrotrons
20.
Sci Rep ; 7(1): 11787, 2017 09 18.
Article in English | MEDLINE | ID: mdl-28924237

ABSTRACT

Pyrogenic carbon is widespread in soil due to wildfires, soot deposition, and intentional amendment of pyrolyzed waste biomass (biochar). Interactions between engineered carbon nanoparticles and natural pyrogenic carbon (char) are unknown. This study first employed transmission electron microscopy (TEM) and X-ray diffraction (XRD) to interpret the superstructure composing aqueous fullerene C60 nanoparticles prepared by prolonged stirring of commercial fullerite in water (nC60-stir). The nC60-stir was a superstructure composed of face-centered cubic (fcc) close-packing of near-spherical C60 superatoms. The nC60-stir superstructure (≈100 nm) reproducibly disintegrated pecan shell biochar pellets (2 mm) made at 700 °C into a stable and homogeneous aqueous colloidal (<100 nm) suspension. The amorphous carbon structure of biochar was preserved after the disintegration, which only occurred above the weight ratio of 30,000 biochar to nC60-stir. Favorable hydrophobic surface interactions between nC60-stir and 700 °C biochar likely disrupted van der Waals forces holding together the amorphous carbon units of biochar and C60 packing in the nC60 superstructure.

SELECTION OF CITATIONS
SEARCH DETAIL
...