Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Complex Intell Systems ; 9(2): 1265-1280, 2023.
Article in English | MEDLINE | ID: mdl-36035628

ABSTRACT

DNA sequence similarity analysis is necessary for enormous purposes including genome analysis, extracting biological information, finding the evolutionary relationship of species. There are two types of sequence analysis which are alignment-based (AB) and alignment-free (AF). AB is effective for small homologous sequences but becomes NP-hard problem for long sequences. However, AF algorithms can solve the major limitations of AB. But most of the existing AF methods show high time complexity and memory consumption, less precision, and less performance on benchmark datasets. To minimize these limitations, we develop an AF algorithm using a 2D k - m e r count matrix inspired by the CGR approach. Then we shrink the matrix by analyzing the neighbors and then measure similarities using the best combinations of pairwise distance (PD) and phylogenetic tree methods. We also dynamically choose the value of k for k - m e r . We develop an efficient system for finding the positions of k - m e r in the count matrix. We apply our system in six different datasets. We achieve the top rank for two benchmark datasets from AFproject, 100% accuracy for two datasets (16 S Ribosomal, 18 Eutherian), and achieve a milestone for time complexity and memory consumption in comparison to the existing study datasets (HEV, HIV-1). Therefore, the comparative results of the benchmark datasets and existing studies demonstrate that our method is highly effective, efficient, and accurate. Thus, our method can be used with the top level of authenticity for DNA sequence similarity measurement.

2.
Environ Sci Pollut Res Int ; 29(44): 67103-67114, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35522407

ABSTRACT

Coronavirus (COVID-19) is a highly contagious virus (SARS-CoV-2) that has caused a global pandemic since January 2020. Scientists around the world are doing extensive research to control this disease. They are working tirelessly to find out the origin and causes of the disease. Several studies and experiments mentioned that there are some meteorological parameters which are highly correlated with COVID-19 transmission. In this work, we studied the effects of 11 meteorological parameters on the transmission of COVID-19 in Bangladesh. We first applied statistical analysis and observed that there is no significant effect of these parameters. Therefore, we proposed a novel technique to analyze the insight effects of these parameters by using a combination of Random Forest, CART, and Lasso feature selection techniques. We observed that 4 parameters are highly influential for COVID-19 where [Formula: see text] and Cloud have positive association whereas WS and AQ have negative impact. Among them, Cloud has the highest positive impact which is 0.063 and WS has the highest negative association which is [Formula: see text]. Moreover, we have validated our performance using DLNM technique. The result of this investigation can be used to develop an alert system that will assist the policymakers to know the characteristics of COVID-19 against meteorological parameters and can impose different policies based on the weather conditions.


Subject(s)
COVID-19 , Bangladesh/epidemiology , COVID-19/epidemiology , Humans , Machine Learning , Pandemics , SARS-CoV-2
3.
J Adv Vet Anim Res ; 9(4): 573-582, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36714506

ABSTRACT

Objectives: This study aimed to develop a computerized deep learning (DL) technique to identify bacterial genera more precisely in minimum time than the usual, traditional, and commonly used techniques like cultural, staining, and morphological characteristics. Materials and Methods: A convolutional neural network as a part of machine learning (ML) for bacterial genera identification methods was developed using python programming language and the Keras API with TensorFlow ML or DL framework to discriminate bacterial genera, e.g., Streptococcus, Staphylococcus, Escherichia, Salmonella, and Corynebacterium. A total of 200 digital microscopic cell images comprising 40 of each of the genera mentioned above were used in this study. Results: The developed technique could identify and distinguish microscopic images of Streptococcus, Staphylococcus, Escherichia, Salmonella, and Corynebacterium with the highest accuracy of 92.20% for Staphylococcus and the lowest of 77.40% for Salmonella. Among the five epochs, the accuracy rate of bacterial genera identification of Staphylococcus was graded 1, and Streptococcus, Escherichia, Corynebacterium, and Salmonella as 2, 3, 4, and 5, respectively. Conclusion: The experimental results suggest using the DL method to predict bacterial genera included in this study. However, further improvement with more bacterial genera, especially of similar morphology, is necessary to make the technique widely used for bacterial genera identification.

SELECTION OF CITATIONS
SEARCH DETAIL
...