Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Thorac Oncol ; 16(4): 572-582, 2021 04.
Article in English | MEDLINE | ID: mdl-33309988

ABSTRACT

INTRODUCTION: Robust data on the outcome of MET-aberrant NSCLC with nontargeted therapies are limited, especially in consideration of the heterogeneity of MET-amplified tumors (METamp). METHODS: A total of 337 tumor specimens of patients with MET-altered Union for International Cancer Control stage IIIB/IV NSCLC were analyzed using next-generation sequencing, fluorescence in situ hybridization, and immunohistochemistry. The evaluation focused on the type of MET aberration, co-occurring mutations, programmed death-ligand 1 expression, and overall survival (OS). RESULTS: METamp tumors (n = 278) had a high frequency of co-occurring mutations (>80% for all amplification levels), whereas 57.6% of the 59 patients with MET gene and exon 14 (METex14) tumors had no additional mutations. In the METamp tumors, with increasing gene copy number (GCN), the frequency of inactivating TP53 mutations increased (GCN < 4: 58.2%; GCN ≥ 10: 76.5%), whereas the frequency of KRAS mutations decreased (GCN < 4: 43.2%; GCN ≥ 10: 11.8%). A total of 10.1% of all the METamp tumors with a GCN ≥ 10 had a significant worse OS (4.0 mo; 95% CI: 1.9-6.0) compared with the tumors with GCN < 10 (12.0 mo; 95% confidence interval [CI]: 9.4-14.6). In the METamp NSCLC, OS with immune checkpoint inhibitor (ICI) therapy was significantly better compared with chemotherapy with 19.0 months (95% CI: 15.8-22.2) versus 8.0 months (95% CI: 5.8-10.2, p < 0.0001). No significant difference in median OS was found between ICI therapy and chemotherapy in the patients with METex14 (p = 0.147). CONCLUSIONS: METex14, METamp GCN ≥ 10, and METamp GCN < 10 represent the subgroups of MET-dysregulated NSCLC with distinct molecular and clinical features. The patients with METex14 do not seem to benefit from immunotherapy in contrast to the patients with METamp, which is of particular relevance for the prognostically poor METamp GCN ≥ 10 subgroup.


Subject(s)
Lung Neoplasms , Genetic Heterogeneity , Humans , Immunotherapy , In Situ Hybridization, Fluorescence , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Proto-Oncogene Proteins c-met/genetics
2.
J Thorac Oncol ; 14(4): 606-616, 2019 04.
Article in English | MEDLINE | ID: mdl-30605727

ABSTRACT

INTRODUCTION: Although KRAS mutations in NSCLC have been considered mutually exclusive driver mutations for a long time, there is now growing evidence that KRAS-mutated NSCLC represents a genetically heterogeneous subgroup. We sought to determine genetic heterogeneity with respect to cancer-related co-mutations and their correlation with different KRAS mutation subtypes. METHODS: Diagnostic samples from 4507 patients with NSCLC were analyzed by next-generation sequencing by using a panel of 14 genes and, in a subset of patients, fluorescence in situ hybridization. Next-generation sequencing with an extended panel of 14 additional genes was performed in 101 patients. Molecular data were correlated with clinical data. Whole-exome sequencing was performed in two patients. RESULTS: We identified 1078 patients with KRAS mutations, of whom 53.5% had at least one additional mutation. Different KRAS mutation subtypes showed different patterns of co-occurring mutations. Besides mutations in tumor protein p53 gene (TP53) (39.4%), serine/threonine kinase 11 gene (STK11) (19.8%), kelch like ECH associated protein 1 gene (KEAP1) (12.9%), and ATM serine/threonine kinase gene (ATM) (11.9%), as well as MNNG HOS Transforming gene (MET) amplifications (15.4%) and erb-b2 receptor tyrosine kinase 2 gene (ERBB2) amplifications (13.8%, exclusively in G12C), we found rare co-occurrence of targetable mutations in EGFR (1.2%) and BRAF (1.2%). Whole-exome sequencing of two patients with co-occurring phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha gene (PIK3CA) mutation revealed clonality of mutated KRAS in one patient and subclonality in the second, suggesting different evolutionary backgrounds. CONCLUSION: KRAS-mutated NSCLC represents a genetically heterogeneous subgroup with a high frequency of co-occurring mutations in cancer-associated pathways, partly associated with distinct KRAS mutation subtypes. This diversity might have implications for understanding the variability of treatment outcome in KRAS-mutated NSCLC and for future trial design.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Male , Middle Aged , Mutation
3.
Clin Cancer Res ; 24(13): 3087-3096, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29615460

ABSTRACT

Purpose:KEAP1 and NFE2L2 mutations are associated with impaired prognosis in a variety of cancers and with squamous cell carcinoma formation in non-small cell lung cancer (NSCLC). However, little is known about frequency, histology dependence, molecular and clinical presentation as well as response to systemic treatment in NSCLC.Experimental Design: Tumor tissue of 1,391 patients with NSCLC was analyzed using next-generation sequencing (NGS). Clinical and pathologic characteristics, survival, and treatment outcome of patients with KEAP1 or NFE2L2 mutations were assessed.Results:KEAP1 mutations occurred with a frequency of 11.3% (n = 157) and NFE2L2 mutations with a frequency of 3.5% (n = 49) in NSCLC patients. In the vast majority of patients, both mutations did not occur simultaneously. KEAP1 mutations were found mainly in adenocarcinoma (AD; 72%), while NFE2L2 mutations were more common in squamous cell carcinoma (LSCC; 59%). KEAP1 mutations were spread over the whole protein, whereas NFE2L2 mutations were clustered in specific hotspot regions. In over 80% of the patients both mutations co-occurred with other cancer-related mutations, among them also targetable aberrations like activating EGFR mutations or MET amplification. Both patient groups showed different patterns of metastases, stage distribution and performance state. No patient with KEAP1 mutation had a response on systemic treatment in first-, second-, or third-line setting. Of NFE2L2-mutated patients, none responded to second- or third-line therapy.Conclusions:KEAP1- and NFE2L2-mutated NSCLC patients represent a highly heterogeneous patient cohort. Both are associated with different histologies and usually are found together with other cancer-related, partly targetable, genetic aberrations. In addition, both markers seem to be predictive for chemotherapy resistance. Clin Cancer Res; 24(13); 3087-96. ©2018 AACR.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Kelch-Like ECH-Associated Protein 1/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , NF-E2-Related Factor 2/genetics , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Cell Line, Tumor , Female , Genetic Association Studies , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Male , NF-E2-Related Factor 2/metabolism , Neoplasm Grading , Neoplasm Staging , Prognosis , Protein Kinase Inhibitors/therapeutic use
4.
Int J Cancer ; 138(4): 927-38, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26340530

ABSTRACT

Small cell lung cancers (SCLCs) and extrapulmonary small cell cancers (SCCs) are very aggressive tumors arising de novo as primary small cell cancer with characteristic genetic lesions in RB1 and TP53. Based on murine models, neuroendocrine stem cells of the terminal bronchioli have been postulated as the cellular origin of primary SCLC. However, both in lung and many other organs, combined small cell/non-small cell tumors and secondary transitions from non-small cell carcinomas upon cancer therapy to neuroendocrine and small cell tumors occur. We define features of "small cell-ness" based on neuroendocrine markers, characteristic RB1 and TP53 mutations and small cell morphology. Furthermore, here we identify a pathway driving the pathogenesis of secondary SCLC involving inactivating NOTCH mutations, activation of the NOTCH target ASCL1 and canonical WNT-signaling in the context of mutual bi-allelic RB1 and TP53 lesions. Additionally, we explored ASCL1 dependent RB inactivation by phosphorylation, which is reversible by CDK5 inhibition. We experimentally verify the NOTCH-ASCL1-RB-p53 signaling axis in vitro and validate its activation by genetic alterations in vivo. We analyzed clinical tumor samples including SCLC, SCC and pulmonary large cell neuroendocrine carcinomas and adenocarcinomas using amplicon-based Next Generation Sequencing, immunohistochemistry and fluorescence in situ hybridization. In conclusion, we identified a novel pathway underlying rare secondary SCLC which may drive small cell carcinomas in organs other than lung, as well.


Subject(s)
Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Signal Transduction , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA Mutational Analysis , Flow Cytometry , Fluorescent Antibody Technique , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Receptors, Notch/genetics , Receptors, Notch/metabolism , Retinoblastoma Protein/genetics , Transfection , Tumor Suppressor Protein p53/genetics
5.
Gut ; 65(8): 1296-305, 2016 08.
Article in English | MEDLINE | ID: mdl-26001389

ABSTRACT

OBJECTIVE: Microsatellite instability (MSI) is detected in approximately 15% of all colorectal cancers (CRC) and virtually in all cases with Lynch syndrome. The MSI phenotype is caused by dysfunctional mismatch repair (MMR) and leads to accumulation of DNA replication errors. Sporadic MSI CRC often harbours BRAF(V600E); however, no consistent data exist regarding targeted treatment approaches in BRAF(wt) MSI CRC. DESIGN: Mutations and quantitative MSI were analysed by deep sequencing in 196 formalin fixed paraffin embedded (FFPE) specimens comprising Lynch and Lynch-like CRCs from the German Hereditary Nonpolyposis Colorectal Cancer registry. Functional relevance of recurrent ERBB2/HER2 mutations was investigated in CRC cell lines using reversible and irreversible HER-targeting inhibitors, EGFR-directed antibody cetuximab, HER2-directed antibody trastuzumab and siRNA-mediated ERBB2/HER2 knockdown. RESULTS: Quantification of nucleotide loss in non-coding mononucleotide repeats distinguished microsatellite status with very high accuracy (area under curve=0.9998) and demonstrated progressive losses with deeper invasion of MMR-deficient colorectal neoplasms (p=0.008). Characterisation of BRAF(wt) MSI CRC revealed hot-spot mutations in well-known oncogenic drivers, including KRAS (38.7%), PIK3CA (36.5%), and ERBB2 (15.0%). L755S and V842I substitutions in ERBB2 were highly recurrent. Functional analyses in ERBB2-mutated MSI CRC cell lines revealed a differential response to HER-targeting compounds and superiority of irreversible pan-HER inhibitors. CONCLUSIONS: We developed a high-throughput deep sequencing approach for concomitant MSI and mutational analyses in FFPE specimens. We provided novel insights into clinically relevant alterations in MSI CRC and a rationale for targeting ERBB2/HER2 mutations in Lynch and Lynch-like CRC.


Subject(s)
Cetuximab/pharmacology , Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , ErbB Receptors , Receptor, ErbB-2 , Trastuzumab/pharmacology , Antineoplastic Agents/pharmacology , Cell Culture Techniques , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms, Hereditary Nonpolyposis/drug therapy , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mismatch Repair , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Female , Humans , Male , Microsatellite Instability , Middle Aged , Pharmacogenomic Testing/methods , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics
6.
J Thorac Oncol ; 10(7): 1049-57, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26102443

ABSTRACT

INTRODUCTION: The Network Genomic Medicine Lung Cancer was set up to rapidly translate scientific advances into early clinical trials of targeted therapies in lung cancer performing molecular analyses of more than 3500 patients annually. Because sequential analysis of the relevant driver mutations on fixated samples is challenging in terms of workload, tissue availability, and cost, we established multiplex parallel sequencing in routine diagnostics. The aim was to analyze all therapeutically relevant mutations in lung cancer samples in a high-throughput fashion while significantly reducing turnaround time and amount of input DNA compared with conventional dideoxy sequencing of single polymerase chain reaction amplicons. METHODS: In this study, we demonstrate the feasibility of a 102 amplicon multiplex polymerase chain reaction followed by sequencing on an Illumina sequencer on formalin-fixed paraffin-embedded tissue in routine diagnostics. Analysis of a validation cohort of 180 samples showed this approach to require significantly less input material and to be more reliable, robust, and cost-effective than conventional dideoxy sequencing. Subsequently, 2657 lung cancer patients were analyzed. RESULTS: We observed that comprehensive biomarker testing provided novel information in addition to histological diagnosis and clinical staging. In 2657 consecutively analyzed lung cancer samples, we identified driver mutations at the expected prevalence. Furthermore we found potentially targetable DDR2 mutations at a frequency of 3% in both adenocarcinomas and squamous cell carcinomas. CONCLUSION: Overall, our data demonstrate the utility of systematic sequencing analysis in a clinical routine setting and highlight the dramatic impact of such an approach on the availability of therapeutic strategies for the targeted treatment of individual cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/genetics , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Cohort Studies , DNA, Neoplasm/analysis , DNA, Neoplasm/genetics , DNA, Neoplasm/isolation & purification , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/therapy , Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods
7.
Oncotarget ; 6(2): 1315-26, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25473901

ABSTRACT

BACKGROUND: Somatic mutations of the PIK3CA gene have been described in non-small cell lung cancer (NSCLC), but limited data is available on their biological relevance. This study was performed to characterize PIK3CA-mutated NSCLC clinically and genetically. PATIENTS AND METHODS: Tumor tissue collected consecutively from 1144 NSCLC patients within a molecular screening network between March 2010 and March 2012 was analyzed for PIK3CA mutations using dideoxy-sequencing and next-generation sequencing (NGS). Clinical, pathological, and genetic characteristics of PIK3CA-mutated patients are described and compared with a control group of PIK3CA-wildtype patients. RESULTS: Among the total cohort of 1144 patients we identified 42 (3.7%) patients with PIK3CA mutations in exon 9 and exon 20. These mutations were found with a higher frequency in sqamous cell carcinoma (8.9%) compared to adenocarcinoma (2.9%, p<0.001). The most common PIK3CA mutation was exon 9 E545K. The majority of patients (57.1%) had additional oncogenic driver aberrations. With the exception of EGFR-mutated patients, non of the genetically defined subgroups in this cohort had a significantly better median overall survival. Further, PIK3CA-mutated patients had a significantly higher incidence of malignancy prior to lung cancer (p<0.001). CONCLUSION: PIK3CA-mutated NSCLC represents a clinically and genetically heterogeneous subgroup in adenocarcinomas as well as in squamous cell carcinomas with a higher prevalence of these mutations in sqamous cell carcinoma. PIK3CA mutations have no negative impact on survival after surgery or systemic therapy. However, PIK3CA mutated lung cancer frequently develops in patients with prior malignancies.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Mutation , Phosphatidylinositol 3-Kinases/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/therapy , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/therapy , Class I Phosphatidylinositol 3-Kinases , Cohort Studies , Exons/genetics , Female , Gene Frequency , Genetic Heterogeneity , High-Throughput Nucleotide Sequencing/methods , Humans , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Male , Middle Aged , Neoplasms, Second Primary/genetics , Neoplasms, Second Primary/pathology , Prognosis , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL