Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 299(10): 105218, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37660910

ABSTRACT

Human G protein-coupled receptor 35 is regulated by agonist-mediated phosphorylation of a set of five phospho-acceptor amino acids within its C-terminal tail. Alteration of both Ser300 and Ser303 to alanine in the GPR35a isoform greatly reduces the ability of receptor agonists to promote interactions with arrestin adapter proteins. Here, we have integrated the use of cell lines genome edited to lack expression of combinations of G protein receptor kinases (GRKs), selective small molecule inhibitors of subsets of these kinases, and antisera able to specifically identify either human GPR35a or mouse GPR35 only when Ser300 and Ser303 (orce; the equivalent residues in mouse GPR35) have become phosphorylated to demonstrate that GRK5 and GRK6 cause agonist-dependent phosphorylation of these residues. Extensions of these studies demonstrated the importance of the GRK5/6-mediated phosphorylation of these amino acids for agonist-induced internalization of the receptor. Homology and predictive modeling of the interaction of human GPR35 with GRKs showed that the N terminus of GRK5 is likely to dock in the same methionine pocket on the intracellular face of GPR35 as the C terminus of the α5 helix of Gα13 and, that while this is also the case for GRK6, GRK2 and GRK3 are unable to do so effectively. These studies provide unique and wide-ranging insights into modes of regulation of GPR35, a receptor that is currently attracting considerable interest as a novel therapeutic target in diseases including ulcerative colitis.

2.
ACS Med Chem Lett ; 14(2): 199-210, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36793435

ABSTRACT

B cell lymphoma 6 (BCL6), a highly regulated transcriptional repressor, is deregulated in several forms of non-Hodgkin lymphoma (NHL), most notably in diffuse large B-cell lymphoma (DLBCL). The activities of BCL6 are dependent on protein-protein interactions with transcriptional co-repressors. To find new therapeutic interventions addressing the needs of patients with DLBCL, we initiated a program to identify BCL6 inhibitors that interfere with co-repressor binding. A virtual screen hit with binding activity in the high micromolar range was optimized by structure-guided methods, resulting in a novel and highly potent inhibitor series. Further optimization resulted in the lead candidate 58 (OICR12694/JNJ-65234637), a BCL6 inhibitor with low nanomolar DLBCL cell growth inhibition and an excellent oral pharmacokinetic profile. Based on its overall favorable preclinical profile, OICR12694 is a highly potent, orally bioavailable candidate for testing BCL6 inhibition in DLBCL and other neoplasms, particularly in combination with other therapies.

3.
J Biol Chem ; 298(10): 102421, 2022 10.
Article in English | MEDLINE | ID: mdl-36030052

ABSTRACT

Recent studies identified a missense mutation in the gene coding for G protein-coupled receptor kinase 6 (GRK6) that segregates with type 2 diabetes (T2D). To better understand how GRK6 might be involved in T2D, we used pharmacological inhibition and genetic knockdown in the mouse ß-cell line, MIN6, to determine whether GRK6 regulates insulin dynamics. We show inhibition of GRK5 and GRK6 increased insulin secretion but reduced insulin processing while GRK6 knockdown revealed these same processing defects with reduced levels of cellular insulin. GRK6 knockdown cells also had attenuated insulin secretion but enhanced proinsulin secretion consistent with decreased processing. In support of these findings, we demonstrate GRK6 rescue experiments in knockdown cells restored insulin secretion after glucose treatment. The altered insulin profile appears to be caused by changes in the proprotein convertases, the enzymes responsible for proinsulin to insulin conversion, as GRK6 knockdown resulted in significantly reduced convertase expression and activity. To identify how the GRK6-P384S mutation found in T2D patients might affect insulin processing, we performed biochemical and cell biological assays to study the properties of the mutant. We found that while GRK6-P384S was more active than WT GRK6, it displayed a cytosolic distribution in cells compared to the normal plasma membrane localization of GRK6. Additionally, GRK6 overexpression in MIN6 cells enhanced proinsulin processing, while GRK6-P384S expression had little effect. Taken together, our data show that GRK6 regulates insulin processing and secretion in a glucose-dependent manner and provide a foundation for understanding the contribution of GRK6 to T2D.


Subject(s)
Diabetes Mellitus, Type 2 , G-Protein-Coupled Receptor Kinases , Insulin , Proinsulin , Animals , Mice , Diabetes Mellitus, Type 2/genetics , Glucose/pharmacology , Insulin/metabolism , Proinsulin/genetics , Proinsulin/metabolism , G-Protein-Coupled Receptor Kinases/genetics , G-Protein-Coupled Receptor Kinases/metabolism , Cell Line
5.
J Med Chem ; 64(15): 11129-11147, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34291633

ABSTRACT

Both previous and additional genetic knockdown studies reported herein implicate G protein-coupled receptor kinase 6 (GRK6) as a critical kinase required for the survival of multiple myeloma (MM) cells. Therefore, we sought to develop a small molecule GRK6 inhibitor as an MM therapeutic. From a focused library of known kinase inhibitors, we identified two hits with moderate biochemical potencies against GRK6. From these hits, we developed potent (IC50 < 10 nM) analogues with selectivity against off-target kinases. Further optimization led to the discovery of an analogue (18) with an IC50 value of 6 nM against GRK6 and selectivity against a panel of 85 kinases. Compound 18 has potent cellular target engagement and antiproliferative activity against MM cells and is synergistic with bortezomib. In summary, we demonstrate that targeting GRK6 with small molecule inhibitors represents a promising approach for MM and identify 18 as a novel, potent, and selective GRK6 inhibitor.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , G-Protein-Coupled Receptor Kinases/antagonists & inhibitors , Multiple Myeloma/drug therapy , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , G-Protein-Coupled Receptor Kinases/metabolism , Humans , Mice , Models, Molecular , Molecular Structure , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Quinazolines/chemical synthesis , Quinazolines/chemistry , Structure-Activity Relationship
6.
Stem Cell Reports ; 7(4): 787-801, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27618721

ABSTRACT

Blood vessels are formed through vasculogenesis, followed by remodeling of the endothelial network through angiogenesis. Many events that occur during embryonic vascular development are recapitulated during adult neoangiogenesis, which is critical to tumor growth and metastasis. Current antiangiogenic tumor therapies, based largely on targeting the vascular endothelial growth factor pathway, show limited clinical benefits, thus necessitating the discovery of alternative targets. Here we report the development of a robust embryonic stem cell-based vascular differentiation assay amenable to small-molecule screens to identify novel modulators of angiogenesis. In this context, RSK and TTK were identified as angiogenic modulators. Inhibition of these pathways inhibited angiogenesis in embryoid bodies and human umbilical vein endothelial cells. Furthermore, inhibition of RSK and TTK reduced tumor growth, vascular density, and improved survival in an in vivo Lewis lung carcinoma mouse model. Our study suggests that RSK and TTK are potential targets for antiangiogenic therapy, and provides an assay system for further pathway screens.


Subject(s)
Blood Vessels/embryology , Blood Vessels/metabolism , Cell Cycle Proteins/metabolism , Cell Differentiation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Ribosomal Protein S6 Kinases/metabolism , Angiogenesis Inhibitors/pharmacology , Animals , Cell Cycle Proteins/antagonists & inhibitors , Cell Line , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Discovery , Female , Humans , Mice , Morphogenesis , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neovascularization, Pathologic , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/genetics , Organogenesis , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Ribosomal Protein S6 Kinases/antagonists & inhibitors
7.
Bioorg Med Chem Lett ; 25(19): 4047-56, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26298497

ABSTRACT

The RAS-RAF-MEK-ERK, or ERK signaling pathway propagates signals through an intracellular signal transduction cascade. Since approximately one third of human cancers are impacted by mutations in the ERK signaling pathway, intensive efforts to develop drugs targeting members of this cascade are ongoing. While efforts to develop drugs aimed at inhibiting RAS are still at an early stage, substantial progress in discovering clinical drugs targeting RAF, MEK, and ERK have been made. This review will highlight the recent progress in this area.


Subject(s)
MAP Kinase Signaling System/drug effects , Protein Kinase Inhibitors/pharmacology , Animals , Dose-Response Relationship, Drug , Humans , Molecular Structure , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
8.
PLoS One ; 8(7): e67583, 2013.
Article in English | MEDLINE | ID: mdl-23844038

ABSTRACT

Mitogen-Activated Protein Kinase (MAPK) pathway activation has been implicated in many types of human cancer. BRAF mutations that constitutively activate MAPK signalling and bypass the need for upstream stimuli occur with high prevalence in melanoma, colorectal carcinoma, ovarian cancer, papillary thyroid carcinoma, and cholangiocarcinoma. In this report we characterize the novel, potent, and selective BRAF inhibitor, dabrafenib (GSK2118436). Cellular inhibition of BRAF(V600E) kinase activity by dabrafenib resulted in decreased MEK and ERK phosphorylation and inhibition of cell proliferation through an initial G1 cell cycle arrest, followed by cell death. In a BRAF(V600E)-containing xenograft model of human melanoma, orally administered dabrafenib inhibited ERK activation, downregulated Ki67, and upregulated p27, leading to tumor growth inhibition. However, as reported for other BRAF inhibitors, dabrafenib also induced MAPK pathway activation in wild-type BRAF cells through CRAF (RAF1) signalling, potentially explaining the squamous cell carcinomas and keratoacanthomas arising in patients treated with BRAF inhibitors. In addressing this issue, we showed that concomitant administration of BRAF and MEK inhibitors abrogated paradoxical BRAF inhibitor-induced MAPK signalling in cells, reduced the occurrence of skin lesions in rats, and enhanced the inhibition of human tumor xenograft growth in mouse models. Taken together, our findings offer preclinical proof of concept for dabrafenib as a specific and highly efficacious BRAF inhibitor and provide evidence for its potential clinical benefits when used in combination with a MEK inhibitor.


Subject(s)
Melanoma/drug therapy , Melanoma/metabolism , Mitogen-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Drug Evaluation, Preclinical , Enzyme Activation/drug effects , Female , Humans , Imidazoles/administration & dosage , Melanoma/pathology , Mice , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mutation , Oximes/administration & dosage , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Pyridones/administration & dosage , Pyrimidinones/administration & dosage , Signal Transduction/drug effects , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
9.
ACS Med Chem Lett ; 4(3): 358-62, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-24900673

ABSTRACT

Hyperactive signaling of the MAP kinase pathway resulting from the constitutively active B-Raf(V600E) mutated enzyme has been observed in a number of human tumors, including melanomas. Herein we report the discovery and biological evaluation of GSK2118436, a selective inhibitor of Raf kinases with potent in vitro activity in oncogenic B-Raf-driven melanoma and colorectal carcinoma cells and robust in vivo antitumor and pharmacodynamic activity in mouse models of B-Raf(V600E) human melanoma. GSK2118436 was identified as a development candidate, and early clinical results have shown significant activity in patients with B-Raf mutant melanoma.

11.
Bioorg Med Chem Lett ; 19(5): 1332-6, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19208477
13.
Bioorg Med Chem Lett ; 19(3): 817-20, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19111461

ABSTRACT

Two new series of potent and selective dual EGFR/ErbB-2 kinase inhibitors derived from novel thienopyrimidine cores have been identified. Isomeric thienopyrimidine cores were evaluated as isosteres for a 4-anilinoquinazoline core and several analogs containing the thieno[3,2-d]pyrimidine core showed anti-proliferative activity with IC(50) values less than 1 microM against human tumor cells in vitro.


Subject(s)
Antineoplastic Agents/pharmacology , Chemistry, Pharmaceutical/methods , ErbB Receptors/chemistry , Pyrimidines/chemistry , Receptor, ErbB-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Lapatinib , Models, Chemical , Molecular Conformation , Quinazolines/pharmacology
14.
Bioorg Med Chem Lett ; 19(1): 21-6, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19028424

ABSTRACT

A novel class of pyrrolidinyl-acetyleneic thieno[3,2-d]pyrimidines has been identified which potently inhibit the EGFR and ErbB-2 receptor tyrosine kinases. Synthetic modifications of the pyrrolidine carbamate moiety result in a range of effects on enzyme and cellular potency. In addition, the impact of the absolute stereochemical configuration on cellular potency and oral mouse pharmacokinetics is described.


Subject(s)
Antineoplastic Agents/chemistry , ErbB Receptors/antagonists & inhibitors , Pyrimidines/pharmacology , Pyrrolidines/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Administration, Oral , Animals , Mice , Pharmacokinetics , Pyrimidines/chemical synthesis , Pyrrolidines/chemical synthesis , Structure-Activity Relationship
15.
Bioorg Med Chem Lett ; 18(21): 5738-40, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18842405

ABSTRACT

A novel class of substituted pyrrolidinyl-acetylenic thieno[3,2-d]pyrimidines has been identified that are potent and selective inhibitors of both EGFR/ErbB-2 receptor tyrosine kinases. The inhibitors are found to display a range of enzyme and cellular potency and also to display a varying level of covalent modification of the kinase targets. Selected molecules, including compound 15h, were found to be potent in enzymatic and cellular assays while also demonstrating exposure in the mouse from an oral dose.


Subject(s)
ErbB Receptors/antagonists & inhibitors , Pyrimidines/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Animals , Cell Line , Mice , Protein Binding , Pyrimidines/chemistry , Structure-Activity Relationship
16.
Proc Natl Acad Sci U S A ; 105(8): 2773-8, 2008 Feb 26.
Article in English | MEDLINE | ID: mdl-18287036

ABSTRACT

Analysis of the x-ray crystal structure of mono-substituted acetylenic thienopyrimidine 6 complexed with the ErbB family enzyme ErbB-4 revealed a covalent bond between the terminal carbon of the acetylene moiety and the sulfhydryl group of Cys-803 at the solvent interface. The identification of this covalent adduct suggested that acetylenic thienopyrimidine 6 and related analogs might also be capable of forming an analogous covalent adduct with EGFR, which has a conserved cysteine (797) near the ATP binding pocket. To test this hypothesis, we treated a truncated, catalytically competent form of EGFR (678-1020) with a structurally related propargylic amine (8). An investigation of the resulting complex by mass spectrometry revealed the formation of a covalent complex of thienopyrimidine 8 with Cys-797 of EGFR. This finding enabled us to readily assess the irreversibility of various inhibitors and also facilitated a structure-activity relationship understanding of the covalent modifying potential and biological activity of a series of acetylenic thienopyrimidine compounds with potent antitumor activity. Several ErbB family enzyme and cell potent 6-ethynyl thienopyrimidine kinase inhibitors were found to form covalent adducts with EGFR.


Subject(s)
Alkynes/metabolism , Aniline Compounds/metabolism , ErbB Receptors/metabolism , Models, Molecular , Pyrimidines/metabolism , Animals , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Female , Isatin/analogs & derivatives , Isatin/metabolism , Mass Spectrometry , Mice , Mice, SCID , Molecular Structure , Pyrimidines/toxicity , Receptor Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship , Xenograft Model Antitumor Assays
17.
Bioorg Med Chem Lett ; 17(16): 4670-7, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17560786

ABSTRACT

The design, synthesis, and SAR of a novel series of heterobiaryl phenethanolamine beta3 adrenergic receptor agonists are described. The furan analogue 49 was shown to elicit a significant dose-dependent lowering of plasma glucose in a rodent model of type 2 diabetes.


Subject(s)
Adrenergic beta-3 Receptor Agonists , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacology , Binding Sites , Models, Molecular , Molecular Structure , Structure-Activity Relationship
18.
J Med Chem ; 49(9): 2758-71, 2006 May 04.
Article in English | MEDLINE | ID: mdl-16640337

ABSTRACT

The synthesis of a series of phenethanolamine aniline agonists that contain an aniline ring on the right-hand side of the molecule substituted at the meta position with a benzoic acid or a pyridyl carboxylate is described. Several of the analogues (e.g., 34, 36-38, 40, and 44) have high beta(3) adrenergic receptor (AR) potency and selectivity against beta(1) and beta(2) ARs in Chinese hamster ovary (CHO) cells expressing beta ARs. The dog pharmacokinetic profile of some of these analogues showed >25% oral bioavailability and po half-lives of at least 1.5 h. Among the compounds described herein, the 3,3'-biarylaniline carboxylate derivatives 36, 38 and the phenylpyridyl derivative 44 demonstrated outstanding in vitro properties and reasonable dog pharmacokinetic profiles. These three analogues also showed dose dependent beta(3) AR mediated responses in mice. The ease of synthesis and superior dog pharmacokinetics of compound 38 relative to that of 44 in combination with its in vitro profile led us to choose this compound as a development candidate for the treatment of type 2 diabetes.


Subject(s)
Adrenergic beta-3 Receptor Agonists , Aniline Compounds/chemistry , Ethanolamine/chemistry , Ethanolamine/pharmacology , Receptors, Adrenergic, beta-3/metabolism , Animals , Blood Glucose/metabolism , Cell Line , Cricetinae , Cyclic AMP/metabolism , Dogs , Ethanolamine/chemical synthesis , Glycosylation/drug effects , Hemoglobins/metabolism , Humans , Male , Mice , Molecular Structure , Structure-Activity Relationship
19.
Bioorg Med Chem Lett ; 16(9): 2419-22, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16483772

ABSTRACT

Anilinoalkynylpyrimidines were prepared and evaluated as dual EGFR/ErbB2 kinase inhibitors. A preference was found for substituted phenyl and heteroaromatic rings attached to the alkyne. In addition, the presence of a potential hydrogen bond donor appended to this ring was favored. Selected molecules in the series demonstrated some activity against human tumor cell lines.


Subject(s)
Alkynes/chemistry , ErbB Receptors/antagonists & inhibitors , Pyrimidines/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
20.
J Med Chem ; 45(3): 567-83, 2002 Jan 31.
Article in English | MEDLINE | ID: mdl-11806709

ABSTRACT

Starting from phenethanolamine aniline leads 3a and 3b, we have identified a series of functionally potent and selective beta(3) adrenergic receptor (AR) agonists containing acylsulfonamide, sulfonylsulfonamide, or sulfonylurea groups within the aniline phenethanolamine series. In beta(3), beta(2), and beta(1) AR cAMP functional assays, 3a and other right-hand side (RHS) carboxylate analogues were found to be full agonists that were modestly selective against beta(1) or beta(2) ARs, while analogues lacking RHS acid functionality were active at beta(3) AR but not selective. Replacement of the carboxylate with acylthiazole and acylmethylsulfone gave potent, but only modestly selective, compounds. Increasing the size of the RHS sulfonamide substituent with phenyl or p-toluene afforded compounds with good potency and functional selectivity (beta(3) AR pEC(50) greater than 8; beta(1) and beta(2) AR selectivity greater than 40- and 500-fold, respectively). Our SAR studies suggest that the potency and selectivity profile of the best analogues reported here is a result of both the steric bulk and acidity of the RHS sulfonamide NH group. Although all of the analogues had a pharmacokinetic half-life of less than 2 h, acylsulfonamides 43 and 44 did show moderately low clearance in dogs. These two compounds were further evaluated by thermographic imaging in mice and were found to produce a robust thermogenic response via oral administration.


Subject(s)
Adrenergic beta-Agonists/chemical synthesis , Aniline Compounds/chemical synthesis , Receptors, Adrenergic, beta-3/drug effects , Sulfonamides/chemical synthesis , Sulfonylurea Compounds/chemical synthesis , Adrenergic beta-Agonists/chemistry , Adrenergic beta-Agonists/pharmacology , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Animals , Biological Availability , Body Temperature/drug effects , CHO Cells , Chromatography, High Pressure Liquid , Cricetinae , Cyclic AMP/biosynthesis , Dogs , Humans , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Mice , Radioligand Assay , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonylurea Compounds/chemistry , Sulfonylurea Compounds/pharmacology , Thermography
SELECTION OF CITATIONS
SEARCH DETAIL
...