Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Vis Exp ; (183)2022 05 06.
Article in English | MEDLINE | ID: mdl-35604154

ABSTRACT

For the survival of the motile phototrophic microorganisms, being under proper light conditions is crucial. Consequently, they show photo-induced behaviors (or photobehavior) and alter their direction of movement in response to light. Typical photobehaviors include photoshock (or photophobic) response and phototaxis. Photoshock is a response to a sudden change in light intensity (e.g., flash illumination), wherein organisms transiently stop moving or move backward. During phototaxis, organisms move toward the light source or in the opposite direction (called positive or negative phototaxis, respectively). The unicellular green alga Chlamydomonas reinhardtii is an excellent organism to study photobehavior because it rapidly changes its swimming pattern by modulating the beating of cilia (a.k.a., flagella) after photoreception. Here, various simple methods are shown to observe photobehaviors in C. reinhardtii. Research on C. reinhardtii's photobehaviors has led to the discovery of common regulatory mechanisms between eukaryotic cilia and channelrhodopsins, which may contribute to a better understanding of ciliopathies and the development of new optogenetics methods.


Subject(s)
Chlamydomonas reinhardtii , Channelrhodopsins , Flagella , Light , Phototaxis
2.
J Vis Exp ; (183)2022 05 06.
Article in English | MEDLINE | ID: mdl-35604171

ABSTRACT

Since the historical experiment on the contraction of glycerinated muscle by adding ATP, which Szent-Györgyi demonstrated in the mid-20th century, in vitro reactivation of demembranated cells has been a traditional and potent way to examine cell motility. The fundamental advantage of this experimental method is that the composition of the reactivation solution may be easily changed. For example, a high-Ca2+ concentration environment that occurs only temporarily due to membrane excitation in vivo can be replicated in the lab. Eukaryotic cilia (a.k.a. flagella) are elaborate motility machinery whose regulatory mechanisms are still to be clarified. The unicellular green alga Chlamydomonas reinhardtii is an excellent model organism in the research field of cilia. The reactivation experiments using demembranated cell models of C. reinhardtii and their derivatives, such as demembranated axonemes of isolated cilia, have significantly contributed to understanding the molecular mechanisms of ciliary motility. Those experiments clarified that ATP energizes ciliary motility and that various cellular signals, including Ca2+, cAMP, and reactive oxygen species, modulate ciliary movements. The precise method for demembranation of C. reinhardtii cells and reactivation of the cell models is described here.


Subject(s)
Chlamydomonas reinhardtii , Adenosine Triphosphate/metabolism , Axoneme/physiology , Cilia/physiology , Flagella/physiology
3.
PLoS One ; 16(10): e0259138, 2021.
Article in English | MEDLINE | ID: mdl-34699573

ABSTRACT

Photo-induced behavioral responses (photobehaviors) are crucial to the survival of motile phototrophic organisms in changing light conditions. Volvocine green algae are excellent model organisms for studying the regulatory mechanisms of photobehavior. We recently reported that unicellular Chlamydomonas reinhardtii and multicellular Volvox rousseletii exhibit similar photobehaviors, such as phototactic and photoshock responses, via different ciliary regulations. To clarify how the regulatory systems have changed during the evolution of multicellularity, we investigated the photobehaviors of four-celled Tetrabaena socialis. Surprisingly, unlike C. reinhardtii and V. rousseletii, T. socialis did not exhibit immediate photobehaviors after light illumination. Electrophysiological analysis revealed that the T. socialis eyespot does not function as a photoreceptor. Instead, T. socialis exhibited slow accumulation toward the light source in a photosynthesis-dependent manner. Our assessment of photosynthetic activities showed that T. socialis chloroplasts possess higher photoprotection abilities against strong light than C. reinhardtii. These data suggest that C. reinhardtii and T. socialis employ different strategies to avoid high-light stress (moving away rapidly and gaining photoprotection, respectively) despite their close phylogenetic relationship.


Subject(s)
Chlorophyta/physiology , Phototropism/physiology , Volvox/physiology , Photic Stimulation
4.
PLoS Genet ; 17(4): e1009471, 2021 04.
Article in English | MEDLINE | ID: mdl-33909603

ABSTRACT

DNA replication is fundamental to all living organisms. In yeast and animals, it is triggered by an assembly of pre-replicative complex including ORC, CDC6 and MCMs. Cyclin Dependent Kinase (CDK) regulates both assembly and firing of the pre-replicative complex. We tested temperature-sensitive mutants blocking Chlamydomonas DNA replication. The mutants were partially or completely defective in DNA replication and did not produce mitotic spindles. After a long G1, wild type Chlamydomonas cells enter a division phase when it undergoes multiple rapid synchronous divisions ('multiple fission'). Using tagged transgenic strains, we found that MCM4 and MCM6 were localized to the nucleus throughout the entire multiple fission division cycle, except for transient cytoplasmic localization during each mitosis. Chlamydomonas CDC6 was transiently localized in nucleus in early division cycles. CDC6 protein levels were very low, probably due to proteasomal degradation. CDC6 levels were severely reduced by inactivation of CDKA1 (CDK1 ortholog) but not the plant-specific CDKB1. Proteasome inhibition did not detectably increase CDC6 levels in the cdka1 mutant, suggesting that CDKA1 might upregulate CDC6 at the transcriptional level. All of the DNA replication proteins tested were essentially undetectable until late G1. They accumulated specifically during multiple fission and then were degraded as cells completed their terminal divisions. We speculate that loading of origins with the MCM helicase may not occur until the end of the long G1, unlike in the budding yeast system. We also developed a simple assay for salt-resistant chromatin binding of MCM4, and found that tight MCM4 loading was dependent on ORC1, CDC6 and MCM6, but not on RNR1 or CDKB1. These results provide a microbial framework for approaching replication control in the plant kingdom.


Subject(s)
Cell Cycle Proteins/genetics , DNA Replication/genetics , Minichromosome Maintenance Complex Component 4/genetics , Mitosis/genetics , Animals , Cell Division/genetics , Cell Nucleus/genetics , Chlamydomonas reinhardtii/genetics , Cyclin-Dependent Kinases/genetics , Minichromosome Maintenance Complex Component 6/genetics , Mutation/genetics , Origin Recognition Complex/genetics , Phosphorylation/genetics , Plasmids/genetics , Proteolysis , Ribonucleotide Reductases/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
5.
Adv Exp Med Biol ; 1293: 21-33, 2021.
Article in English | MEDLINE | ID: mdl-33398805

ABSTRACT

Channelrhodopsins (ChRs) are the light-gated ion channels that have opened the research field of optogenetics. They were originally identified in the green alga Chlamydomonas reinhardtii, a biciliated unicellular alga that inhabits in freshwater, swims with the cilia, and undergoes photosynthesis. It has various advantages as an experimental organism and is used in a wide range of research fields including photosynthesis, cilia, and sexual reproduction. ChRs function as the primary photoreceptor for the cell's photo-behavioral responses, seen as changes in the manner of swimming after photoreception. In this chapter, we will introduce C. reinhardtii as an experimental organism and explain our current understanding of how the cell senses light and shows photo-behavioral responses.


Subject(s)
Channelrhodopsins/metabolism , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/radiation effects , Light , Channelrhodopsins/radiation effects , Chlamydomonas reinhardtii/cytology , Cilia/physiology , Optogenetics/methods , Photosynthesis
6.
Bot Stud ; 59(1): 10, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29616358

ABSTRACT

BACKGROUND: Volvox carteri f. nagariensis is a model taxon that has been studied extensively at the cellular and molecular level. The most distinctive morphological attribute of V. carteri f. nagariensis within V. carteri is the production of sexual male spheroids with only a 1:1 ratio of somatic cells to sperm packets or androgonidia (sperm packet initials). However, the morphology of male spheroids of V. carteri f. nagariensis has been examined only in Japanese strains. In addition, V. carteri f. nagariensis has heterothallic sexuality; male and female sexes are determined by the sex-determining chromosomal region or mating-type locus composed of a > 1 Mbp linear chromosome. Fifteen sex-specific genes and many sex-based divergent shared genes (gametologs) are present within this region. Thus far, such genes have not been identified in natural populations of this species. RESULTS: During a recent fieldwork in Taiwan, we encountered natural populations of V. carteri that had not previously been recorded from Taiwan. In total, 33 strains of this species were established from water samples collected in Northern Taiwan. Based on sequences of the internal transcribed spacer 2 region of nuclear ribosomal DNA and the presence of asexual spheroids with up to 16 gonidia, the species was clearly identified as V. carteri f. nagariensis. However, the sexual male spheroids of the Taiwanese strains generally exhibited a 1:1 to > 50:1 ratio of somatic cells to androgonidia. We also investigated the presence or absence of several sex-specific genes and the sex-based divergent genes MAT3m, MAT3f and LEU1Sm. We did not identify recombination or deletion of such genes between the male and female mating-type locus haplotypes in 32 of the 33 strains. In one putative female strain, the female-specific gene HMG1f was not amplified by genomic polymerase chain reaction. When sexually induced, apparently normal female sexual spheroids developed in this strain. CONCLUSIONS: Male spheroids are actually variable within V. carteri f. nagariensis. Therefore, the minimum ratio of somatic cells to androgonidia in male spheroids and the maximum number of gonidia in asexual spheroids may be diagnostic for V. carteri f. nagariensis. HMG1f may not be directly related to the formation of female spheroids in this taxon.

7.
Proc Natl Acad Sci U S A ; 115(5): E1061-E1068, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29311312

ABSTRACT

Volvox rousseletii is a multicellular spheroidal green alga containing ∼5,000 cells, each equipped with two flagella (cilia). This organism shows striking photobehavior without any known intercellular communication. To help understand how the behavior of flagella is regulated, we developed a method to extract the whole organism with detergent and reactivate its flagellar motility. Upon addition of ATP, demembranated flagella (axonemes) in the spheroids actively beat and the spheroids swam as if they were alive. Under Ca2+-free conditions, the axonemes assumed planar and asymmetrical waveforms and beat toward the posterior pole, as do live spheroids in the absence of light stimulation. In the presence of 10-6 M Ca2+, however, most axonemes beat three-dimensionally toward the anterior pole, similar to flagella in photostimulated live spheroids. This Ca2+-dependent change in flagellar beating direction was more conspicuous near the anterior pole of the spheroid, but was not observed near the posterior pole. This anterior-posterior gradient of flagellar Ca2+ sensitivity may explain the mechanism of V. rousseletii photobehavior.


Subject(s)
Calcium/physiology , Detergents/chemistry , Flagella/physiology , Phototaxis , Volvox/physiology , Adenosine Triphosphate/chemistry , Axoneme/physiology , Microscopy, Phase-Contrast , Movement , Photosynthesis , Video Recording
8.
Bio Protoc ; 7(12): e2356, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-34541103

ABSTRACT

Phototaxis is a behavior in which organisms move toward or away from the light source (positive or negative phototaxis, respectively). It is crucial for phototrophic microorganisms to inhabit under proper light conditions for phototaxis. The unicellular green alga Chlamydomonas reinhardtii rapidly changes its swimming direction upon light illumination, and thus is a nice model organism for phototaxis research. Here we show two methods to assay Chlamydomonas phototaxis; one is a quick, easy and qualitative analysis, so-called the dish assay; and the other is a quantitative single-cell analysis.

9.
PLoS One ; 11(11): e0167148, 2016.
Article in English | MEDLINE | ID: mdl-27880842

ABSTRACT

Volvox sect. Volvox is characterized by having unique morphological characteristics, such as thick cytoplasmic bridges between adult somatic cells in the spheroids and spiny zygote walls. Species of this section are found from various freshwater habitats. Recently, three species of Volvox sect. Volvox originating from rice paddies and a marsh were studied taxonomically based on molecular and morphological data of cultured materials. However, taxonomic studies have not been performed on cultured materials of this section originating from large lake water bodies. We studied a new morphological type of Volvox sect. Volvox ("Volvox sp. Sagami"), using cultured materials originating from two large lakes and a pond in Japan. Volvox sp. Sagami produced monoecious sexual spheroids and may represent a new morphological species; it could be clearly distinguished from all previously described monoecious species of Volvox sect. Volvox by its small number of eggs or zygotes (5-25) in sexual spheroids, with short acute spines (up to 3 µm long) on the zygote walls and elongated anterior somatic cells in asexual spheroids. Based on sequences of internal transcribed spacer (ITS) regions of nuclear ribosomal DNA (rDNA; ITS-1, 5.8S rDNA and ITS-2) and plastid genes, however, the Volvox sp. Sagami lineage and its sister lineage (the monoecious species V. ferrisii) showed very small genetic differences, which correspond to the variation within a single biological species in other volvocalean algae. Since V. ferrisii was different from Volvox sp. Sagami, by having approximately 100-200 zygotes in the sexual spheroids and long spines (6-8.5 µm long) on the zygote walls, as well as growing in Japanese rice paddies, these two morphologically distinct lineages might have diverged rapidly in the two different freshwater habitats. In addition, the swimming velocity during phototaxis of Volvox sp. Sagami spheroids originating from large lakes was significantly higher than that of V. ferrisii originating from rice paddies, suggesting adaptation of Volvox sp. Sagami to large water bodies.


Subject(s)
DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , Ecosystem , Genome, Plastid , Lakes , Seeds , Volvox , Japan , Seeds/cytology , Seeds/genetics , Seeds/growth & development , Volvox/cytology , Volvox/genetics , Volvox/growth & development
10.
Proc Natl Acad Sci U S A ; 113(19): 5299-304, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27122315

ABSTRACT

The biflagellate green alga Chlamydomonas reinhardtii exhibits both positive and negative phototaxis to inhabit areas with proper light conditions. It has been shown that treatment of cells with reactive oxygen species (ROS) reagents biases the phototactic sign to positive, whereas that with ROS scavengers biases it to negative. Taking advantage of this property, we isolated a mutant, lts1-211, which displays a reduction-oxidation (redox) dependent phototactic sign opposite to that of the wild type. This mutant has a single amino acid substitution in phytoene synthase, an enzyme that functions in the carotenoid-biosynthesis pathway. The eyespot contains large amounts of carotenoids and is crucial for phototaxis. Most lts1-211 cells have no detectable eyespot and reduced carotenoid levels. Interestingly, the reversed phototactic-sign phenotype of lts1-211 is shared by other eyespot-less mutants. In addition, we directly showed that the cell body acts as a convex lens. The lens effect of the cell body condenses the light coming from the rear onto the photoreceptor in the absence of carotenoid layers, which can account for the reversed-phototactic-sign phenotype of the mutants. These results suggest that light-shielding property of the eyespot is essential for determination of phototactic sign.


Subject(s)
Carotenoids/physiology , Cell Movement/physiology , Chlamydomonas reinhardtii/physiology , Photoreceptor Cells, Invertebrate/physiology , Phototaxis/physiology , Animals , Carotenoids/radiation effects , Cell Movement/radiation effects , Chlamydomonas reinhardtii/cytology , Chlamydomonas reinhardtii/radiation effects , Light , Photoreceptor Cells, Invertebrate/radiation effects , Pigmentation/physiology , Pigmentation/radiation effects , Radiation Dosage
11.
Biochem Biophys Rep ; 7: 379-385, 2016 Sep.
Article in English | MEDLINE | ID: mdl-28955929

ABSTRACT

The unicellular green alga Chlamydomonas reinhardtii is a model organism for various studies in biology. CC-124 is a laboratory strain widely used as a wild type. However, this strain is known to carry agg1 mutation, which causes cells to swim away from the light source (negative phototaxis), in contrast to the cells of other wild-type strains, which swim toward the light source (positive phototaxis). Here we identified the causative gene of agg1 (AGG1) using AFLP-based gene mapping and whole genome next-generation sequencing. This gene encodes a 36-kDa protein containing a Fibronectin type III domain and a CHORD-Sgt1 (CS) domain. The gene product is localized to the cell body and not to flagella or basal body.

12.
BMC Biol ; 8: 103, 2010 Jul 27.
Article in English | MEDLINE | ID: mdl-20663212

ABSTRACT

BACKGROUND: The evolution of multicellular motile organisms from unicellular ancestors required the utilization of previously evolved tactic behavior in a multicellular context. Volvocine green algae are uniquely suited for studying tactic responses during the transition to multicellularity because they range in complexity from unicellular to multicellular genera. Phototactic responses are essential for these flagellates because they need to orientate themselves to receive sufficient light for photosynthesis, but how does a multicellular organism accomplish phototaxis without any known direct communication among cells? Several aspects of the photoresponse have previously been analyzed in volvocine algae, particularly in the unicellular alga Chlamydomonas. RESULTS: In this study, the phototactic behavior in the spheroidal, multicellular volvocine green alga Volvox rousseletii (Volvocales, Chlorophyta) was analyzed. In response to light stimuli, not only did the flagella waveform and beat frequency change, but the effective stroke was reversed. Moreover, there was a photoresponse gradient from the anterior to the posterior pole of the spheroid, and only cells of the anterior hemisphere showed an effective response. The latter caused a reverse of the fluid flow that was confined to the anterior hemisphere. The responsiveness to light is consistent with an anterior-to-posterior size gradient of eyespots. At the posterior pole, the eyespots are tiny or absent, making the corresponding cells appear to be blind. Pulsed light stimulation of an immobilized spheroid was used to simulate the light fluctuation experienced by a rotating spheroid during phototaxis. The results demonstrated that in free-swimming spheroids, only those cells of the anterior hemisphere that face toward the light source reverse the beating direction in the presence of illumination; this behavior results in phototactic turning. Moreover, positive phototaxis is facilitated by gravitational forces. Under our conditions, V. rousseletii spheroids showed no negative phototaxis. CONCLUSIONS: On the basis of our results, we developed a mechanistic model that predicts the phototactic behavior in V. rousseletii. The model involves photoresponses, periodically changing light conditions, morphological polarity, rotation of the spheroid, two modes of flagellar beating, and the impact of gravity. Our results also indicate how recently evolved multicellular organisms adapted the phototactic capabilities of their unicellular ancestors to multicellular life.


Subject(s)
Flagella/physiology , Volvox/physiology , Light , Movement , Photic Stimulation , Phylogeny , Volvox/genetics , Volvox/ultrastructure
13.
Plant Cell ; 21(4): 1166-81, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19346464

ABSTRACT

Here, we report our analysis of a mutant of Volvox carteri, InvB, whose embryos fail to execute inversion, the process in which each Volvox embryo normally turns itself inside-out at the end of embryogenesis, thereby achieving the adult configuration. The invB gene encodes a nucleotide-sugar transporter that exhibits GDP-mannose transport activity when expressed in yeast. In wild-type embryos, the invB transcript is maximally abundant before and during inversion. A mannoside probe (fluorescent concanavalin A) stains the glycoprotein-rich gonidial vesicle (GV) surrounding wild-type embryos much more strongly than it stains the GV surrounding InvB embryos. Direct measurements revealed that throughout embryogenesis the GV surrounding a wild-type embryo increases in size much more than the GV surrounding an InvB embryo does, and the fully cleaved InvB embryo is much more tightly packed within its GV than a wild-type embryo is. To test the hypothesis that the restraint imposed by a smaller than normal GV directly causes the inversion defect in the mutant, we released InvB embryos from their GVs microsurgically. The resulting embryos inverted normally, demonstrating that controlled enlargement of the GV, by a process in which requires the InvB nucleotide-sugar transporter, is essential to provide the embryo sufficient space to complete inversion.


Subject(s)
Algal Proteins/physiology , Carrier Proteins/physiology , Glycoproteins/metabolism , Volvox/growth & development , Algal Proteins/chemistry , Algal Proteins/genetics , Amino Acid Sequence , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cloning, Molecular , Models, Biological , Molecular Sequence Data , Morphogenesis/genetics , Mutation , Phenotype , RNA, Messenger/metabolism , Sequence Alignment , Volvox/physiology , Volvox/ultrastructure
14.
Genetics ; 180(3): 1343-53, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18791222

ABSTRACT

A cold-inducible transposon called Jordan has previously been used to tag and recover genes controlling key aspects of Volvox development, including the process called inversion. In a search for additional genes, we isolated 17 new inversionless mutants from cultures grown at 24 degrees (the temperature that activates Jordan transposition). These mutants were stable at 32 degrees, but generated revertants at 24 degrees . DNA blots revealed that one mutant had a transposon unrelated to Jordan inserted in invA ("inversionless A"). This new transposon, which we named Idaten, has terminal inverted repeats (TIRs) beginning with CCCTA, and upon insertion it creates a 3-bp target-site duplication. It appears to belong to the CACTA superfamily of class II DNA transposons, which includes En/Spm. No significant open reading frames were in the Idaten sequence, but we retrieved another element with Idaten-type TIRs encoding a protein similar to the En/Spm transposase as a candidate for an Idaten-specific transposase. We found that in five of the new inversionless strains we could not find any Jordan insertions causing the phenotype to possess insertions of an Idaten family member in a single locus (invC). This clearly indicates that Idaten is a potentially powerful alternative to Jordan for tagging developmentally important genes in Volvox.


Subject(s)
Algal Proteins/genetics , Cold Temperature , DNA Transposable Elements/genetics , Gene Expression Regulation, Developmental , Retroelements/genetics , Volvox/physiology , Amino Acid Sequence , Base Sequence , Blotting, Southern , Cloning, Molecular , DNA, Algal/genetics , DNA, Plant/genetics , Genome, Plant , Molecular Sequence Data , Mutagenesis, Insertional , Polymerase Chain Reaction , Sequence Homology, Amino Acid , Terminal Repeat Sequences/genetics , Transposases
SELECTION OF CITATIONS
SEARCH DETAIL
...