Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
IMA Fungus ; 14(1): 4, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36823663

ABSTRACT

Invasive, exotic plant pathogens pose a major threat to native and agricultural ecosystems. Phytophthora × cambivora is an invasive, destructive pathogen of forest and fruit trees causing severe damage worldwide to chestnuts (Castanea), apricots, peaches, plums, almonds and cherries (Prunus), apples (Malus), oaks (Quercus), and beech (Fagus). It was one of the first damaging invasive Phytophthora species to be introduced to Europe and North America, although its origin is unknown. We determined its population genetic history in Europe, North and South America, Australia and East Asia (mainly Japan) using genotyping-by-sequencing. Populations in Europe and Australia appear clonal, those in North America are highly clonal yet show some degree of sexual reproduction, and those in East Asia are partially sexual. Two clonal lineages, each of opposite mating type, and a hybrid lineage derived from these two lineages, dominated the populations in Europe and were predominantly found on fagaceous forest hosts (Castanea, Quercus, Fagus). Isolates from fruit trees (Prunus and Malus) belonged to a separate lineage found in Australia, North America, Europe and East Asia, indicating the disease on fruit trees could be caused by a distinct lineage of P. × cambivora, which may potentially be a separate sister species and has likely been moved with live plants. The highest genetic diversity was found in Japan, suggesting that East Asia is the centre of origin of the pathogen. Further surveys in unsampled, temperate regions of East Asia are needed to more precisely identify the location and range of the centre of diversity.

2.
Virus Evol ; 8(2): veac060, 2022.
Article in English | MEDLINE | ID: mdl-35903148

ABSTRACT

Characterizing the detailed spatial and temporal dynamics of plant pathogens can provide valuable information for crop protection strategies. However, the epidemiological characteristics and evolutionary trajectories of pathogens can differ markedly from one country to another. The most widespread and important virus of brassica vegetables, turnip mosaic virus (TuMV), causes serious plant diseases in Japan. We collected 317 isolates of TuMV from Raphanus and Brassica plants throughout Japan over nearly five decades. Genomic sequences from these isolates were combined with published sequences. We identified a total of eighty-eight independent recombination events in Japanese TuMV genomes and found eighty-two recombination-type patterns in Japan. We assessed the evolution of TuMV through space and time using whole and partial genome sequences of both nonrecombinants and recombinants. Our results suggest that TuMV was introduced into Japan after the country emerged from its isolationist policy (1639-1854) in the Edo period and then dispersed to other parts of Japan in the 20th century. The results of our analyses reveal the complex structure of the TuMV population in Japan and emphasize the importance of identifying recombination events in the genome. Our study also provides an example of surveying the epidemiology of a virus that is highly recombinogenic.

3.
J Fungi (Basel) ; 7(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803849

ABSTRACT

As global plant trade expands, tree disease epidemics caused by pathogen introductions are increasing. Since ca 2000, the introduced oomycete Phytophthora ramorum has caused devastating epidemics in Europe and North America, spreading as four ancient clonal lineages, each of a single mating type, suggesting different geographical origins. We surveyed laurosilva forests for P. ramorum around Fansipan mountain on the Vietnam-China border and on Shikoku and Kyushu islands, southwest Japan. The surveys yielded 71 P. ramorum isolates which we assigned to eight new lineages, IC1 to IC5 from Vietnam and NP1 to NP3 from Japan, based on differences in colony characteristics, gene x environment responses and multigene phylogeny. Molecular phylogenetic trees and networks revealed the eight Asian lineages were dispersed across the topology of the introduced European and North American lineages. The deepest node within P. ramorum, the divergence of lineages NP1 and NP2, was estimated at 0.5 to 1.6 Myr. The Asian lineages were each of a single mating type, and at some locations, lineages of "opposite" mating type were present, suggesting opportunities for inter-lineage recombination. Based on the high level of phenotypic and phylogenetic diversity in the sample populations, the coalescence results and the absence of overt host symptoms, we conclude that P. ramorum comprises many anciently divergent lineages native to the laurosilva forests between eastern Indochina and Japan.

4.
Front Microbiol ; 12: 633502, 2021.
Article in English | MEDLINE | ID: mdl-33633714

ABSTRACT

Two novel endornaviruses, Phytophthora endornavirus 2 (PEV2) and Phytophthora endornavirus 3 (PEV3) were found in isolates of a Phytophthora pathogen of asparagus collected in Japan. A molecular phylogenetic analysis indicated that PEV2 and PEV3 belong to the genus Alphaendornavirus. The PEV2 and PEV3 genomes consist of 14,345 and 13,810 bp, and they contain single open reading frames of 4,640 and 4,603 codons, respectively. Their polyproteins contain the conserved domains of an RNA helicase, a UDP-glycosyltransferase, and an RNA-dependent RNA polymerase, which are conserved in other alphaendornaviruses. PEV2 is closely related to Brown algae endornavirus 2, whereas PEV3 is closely related to Phytophthora endornavirus 1 (PEV1), which infects a Phytophthora sp. specific to Douglas fir. PEV2 and PEV3 were detected at high titers in two original Phytophthora sp. isolates, and we found a sub-isolate with low titers of the viruses during subculture. We used the high- and low-titer isolates to evaluate the effects of the viruses on the growth, development, and fungicide sensitivities of the Phytophthora sp. host. The high-titer isolates produced smaller mycelial colonies and much higher numbers of zoosporangia than the low-titer isolate. These results suggest that PEV2 and PEV3 inhibited hyphal growth and stimulated zoosporangium formation. The high-titer isolates were more sensitive than the low-titer isolate to the fungicides benthiavalicarb-isopropyl, famoxadone, and chlorothalonil. In contrast, the high-titer isolates displayed lower sensitivity to the fungicide metalaxyl (an inhibitor of RNA polymerase I) when compared with the low-titer isolate. These results indicate that persistent infection with PEV2 and PEV3 may potentially affect the fungicide sensitivities of the host oomycete.

5.
Mycologia ; 106(3): 431-47, 2014.
Article in English | MEDLINE | ID: mdl-24871599

ABSTRACT

A non-papillate, heterothallic Phytophthora species first isolated in 2001 and subsequently from symptomatic roots, crowns and stems of 33 plant species in 25 unrelated botanical families from 13 countries is formally described here as a new species. Symptoms on various hosts included crown and stem rot, chlorosis, wilting, leaf blight, cankers and gumming. This species was isolated from Australia, Hungary, Israel, Italy, Japan, the Netherlands, Norway, South Africa, Spain, Taiwan, Turkey, the United Kingdom and United States in association with shrubs and herbaceous ornamentals grown mainly in greenhouses. The most prevalent hosts are English ivy (Hedera helix) and Cistus (Cistus salvifolius). The association of the species with acorn banksia (Banksia prionotes) plants in natural ecosystems in Australia, in affected vineyards (Vitis vinifera) in South Africa and almond (Prunus dulcis) trees in Spain and Turkey in addition to infection of shrubs and herbaceous ornamentals in a broad range of unrelated families are a sign of a wide ecological adaptation of the species and its potential threat to agricultural and natural ecosystems. The morphology of the persistent non-papillate ellipsoid sporangia, unique toruloid lobate hyphal swellings and amphigynous antheridia does not match any of the described species. Phylogenetic analysis based on sequences of the ITS rDNA, EF-1α, and ß-tub supported that this organism is a hitherto unknown species. It is closely related to species in ITS clade 7b with the most closely related species being P. sojae. The name Phytophthora niederhauserii has been used in previous studies without the formal description of the holotype. This name is validated in this manuscript with the formal description of Phytophthora niederhauserii Z.G. Abad et J.A. Abad, sp. nov. The name is coined to honor Dr John S. Niederhauser, a notable plant pathologist and the 1990 World Food Prize laureate.


Subject(s)
Phytophthora/isolation & purification , Plant Diseases/microbiology , Plants/microbiology , Australia , Fruit/microbiology , Molecular Sequence Data , Phylogeny , Phytophthora/classification , Phytophthora/genetics , Phytophthora/growth & development , Spores/growth & development , United States
6.
Appl Microbiol Biotechnol ; 97(9): 3801-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23549745

ABSTRACT

Biological soil disinfestations (BSDs) were developed separately in Japan and in The Netherlands as an alternative to chemical fumigations. In Japan, it was developed based on the knowledge of irrigated paddy rice and upland crop rotation system that was rather tolerant of soil-borne disease development. The methods consist of application of easily decomposable organic matter, irrigation, and covering the soil surface with plastic film, thereby inducing anaerobic (reductive) soil conditions and suppressing many soil-borne pests including fungi, bacteria, nematodes, and weeds. The methods are widely used by organic farmers in the area where residences and agricultural fields are intermingled. To note one advantage of these methods, maintenance of soil suppressiveness to Fusarium wilt of tomato was suggested, while soil treated with chloropicrin became conducive to the disease. Suppression of soil-borne fungal pathogens by BSDs might be attributed to anaerobicity and high temperature, organic acids generated, and metal ions released into soil water. Contributions of respective factors to suppression of respective pathogens might be diverse. Presumably, these factors might vary on the fungal community structure in BSD-treated soil. These factors also work in paddy fields. Therefore, the BSDs developed in Japan are probably a method to raise the efficacy of paddy-upland rotation through intensive organic matter application and through maintenance of a strongly anaerobic (reductive) soil condition.


Subject(s)
Soil Pollutants , Agriculture/methods , Anaerobiosis , Environmental Monitoring , Japan , Organic Chemicals
SELECTION OF CITATIONS
SEARCH DETAIL
...