Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
J Heart Lung Transplant ; 43(6): 911-919, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38367739

ABSTRACT

BACKGROUND: Temporary mechanical circulatory support as well as multidisciplinary team approach in a regional care organization might improve survival of cardiogenic shock. No study has evaluated the relative effect of each temporary mechanical circulatory support on mortality in the context of a regional network. METHODS: Prospective observational data were retrieved from patients consecutively admitted with cardiogenic shock to the intensive care units in 3 centers organized into a regional cardiac assistance network. Temporary mechanical circulatory support indication was decided by a heart team, based on the initial shock severity or if shock was refractory to medical treatment within 24 hours of admission. A propensity score for circulatory support use was used as an adjustment co-variable to emulate a target trial. The primary endpoint was in-hospital mortality. RESULTS: Two hundred and forty-six patients were included in the study (median age: 59.5 years, 71.9% male): 121 received early mechanical assistance. The main etiologies were acute myocardial infraction (46.8%) and decompensated heart failure (27.2%). Patients who received early mechanical assistance had more severe conditions than other patients. Their crude in-hospital mortality was 38% and 22.4% in other patients but adjusted in-hospital mortality was not different (hazard ratio 0.91, 95% CI:0.65-1.26). Patients with mechanical assistance had a higher rate of complications than others with longer Intensive Care Unit and hospital stays. CONCLUSIONS: In the conditions of a cardiac assistance regional network, in-hospital mortality was not improved by early mechanical assistance implantation. A high incidence of complications of temporary mechanical circulatory support may have jeopardized its potential benefit.


Subject(s)
Heart-Assist Devices , Hospital Mortality , Shock, Cardiogenic , Humans , Shock, Cardiogenic/therapy , Shock, Cardiogenic/mortality , Male , Female , Middle Aged , Prospective Studies , Extracorporeal Membrane Oxygenation/methods , Aged , Time Factors , Survival Rate/trends
4.
Front Cardiovasc Med ; 10: 1248606, 2023.
Article in English | MEDLINE | ID: mdl-38028479

ABSTRACT

Heart transplantation, the gold standard treatment for end-stage heart failure, is limited by heart graft shortage, justifying expansion of the donor pool. Currently, static cold storage (SCS) of hearts from donations after brainstem death remains the standard practice, but it is usually limited to 240 min. Prolonged cold ischemia and ischemia-reperfusion injury (IRI) have been recognized as major causes of post-transplant graft failure. Continuous ex situ perfusion is a new approach for donor organ management to expand the donor pool and/or increase the utilization rate. Continuous ex situ machine perfusion (MP) can satisfy the metabolic needs of the myocardium, minimizing irreversible ischemic cell damage and cell death. Several hypothermic or normothermic MP methods have been developed and studied, particularly in the preclinical setting, but whether MP is superior to SCS remains controversial. Other approaches seem to be interesting for extending the pool of heart graft donors, such as blocking the paths of apoptosis and necrosis, extracellular vesicle therapy, or donor heart-specific gene therapy. In this systematic review, we summarize the mechanisms involved in IRI during heart transplantation and existing targeting therapies. We also critically evaluate all available data on continuous ex situ perfusion devices for adult donor hearts, highlighting its therapeutic potential and current limitations and shortcomings.

6.
Front Cardiovasc Med ; 7: 615507, 2020.
Article in English | MEDLINE | ID: mdl-33585582

ABSTRACT

Aims: Microvascular alterations occurring after myocardial infarction (MI) may represent a risk factor for multi-organ failure. Here we used in vivo photoacoustic (PA) imaging to track and define the changes in vascular oxygen saturation (sO2) occurring over time after experimental MI in multiple peripheral organs and in the brain. Methods and Results: Experimental MI was obtained in BALB/c mice by permanent ligation of the left anterior descending artery. PA imaging (Vevo LAZR-X) allowed tracking mouse-specific sO2 kinetics in the cardiac left ventricular (LV) anterior wall, brain, kidney, and liver at 4 h, 1 day, and 7 days post-MI. Here we reported a correlation between LV sO2 and longitudinal anterior myocardial strain after MI (r = -0.44, p < 0.0001, n = 96). Acute LV dysfunction was associated with global hypoxia, specifically a decrease in sO2 level in the brain (-5.9%), kidney (-6.4%), and liver (-7.3%) at 4 and 24 h post-MI. Concomitantly, a preliminary examination of capillary NG2DsRed pericytes indicated cell rarefication in the heart and kidney. While the cardiac tissue was persistently impacted, sO2 levels returned to pre-MI levels in the brain and in peripheral organs 7 days after MI. Conclusions: Collectively, our data indicate that experimental MI elicits precise trajectories of vascular hypoxia in peripheral organs and in the brain. PA imaging enabled the synchronous tracking of oxygenation in multiple organs and occurring post-MI, potentially enabling a translational diagnostic modality for the identification of vascular modifications in this disease setting.

SELECTION OF CITATIONS
SEARCH DETAIL
...