Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biomed Res Int ; 2018: 9873471, 2018.
Article in English | MEDLINE | ID: mdl-30228991

ABSTRACT

Glycosaminoglycans are important for cell signaling and therefore for proper embryonic development and adult homeostasis. Expressions of genes involved in proteoglycan/glycosaminoglycan (GAG) metabolism and of genes coding for growth factors known to bind GAGs were analyzed during skin development by microarray analysis and real time quantitative PCR. GAG related genes were organized in six categories based on their role in GAG homeostasis, viz. (1) production of precursor molecules, (2) production of core proteins, (3) synthesis of the linkage region, (4) polymerization, (5) modification, and (6) degradation of the GAG chain. In all categories highly dynamic up- and downregulations were observed during skin development, including differential expression of GAG modifying isoenzymes, core proteins, and growth factors. In two mice models, one overexpressing heparanase and one lacking C5 epimerase, differential expression of only few genes was observed. Data show that during skin development a highly dynamic and complex expression of GAG-associated genes occurs. This likely reflects quantitative and qualitative changes in GAGs/proteoglycans, including structural fine tuning, which may be correlated with growth factor handling.


Subject(s)
Gene Expression Regulation , Glycosaminoglycans/metabolism , Proteoglycans/metabolism , Skin/growth & development , Animals , Dermis , Female , Mice
2.
J Tissue Eng Regen Med ; 10(1): E34-44, 2016 Jan.
Article in English | MEDLINE | ID: mdl-23468399

ABSTRACT

Autologous skin grafts are the gold standard for the treatment of burn wounds. In a number of cases, treatment with autologous tissue is not possible and skin substitutes are used. The outcome, however, is not optimal and improvements are needed. Inspired by scarless healing in early embryonic development, we here set out a strategy for the design and construction of embryonic-like scaffolds for skin tissue engineering. This strategy may serve as a general approach in the construction of embryonic-like scaffolds for other tissues/organ. As a first step, key effector molecules upregulated during embryonic and neonatal skin formation were identified using a comparative gene expressing analysis. A set of 20 effector molecules was identified, from which insulin-like growth factor 2 (IGF2) and sonic hedgehog (SHH) were selected for incorporation into a type I collagen-heparin scaffold. Porous scaffolds were constructed using purified collagen fibrils and 6% covalently bound heparin (to bind and protect the growth factors), and IGF2 and SHH were incorporated either individually (~0.7 and 0.4 µg/mg scaffolds) or in combination (combined ~1.5 µg/mg scaffolds). In addition, scaffolds containing hyaluronan (up to 20 µg/mg scaffold) were prepared, based on the up- or downregulation of genes involved in hyaluronan synthesis/degradation and its suggested role in scarless healing. In conclusion, based on a comprehensive gene expression analysis, a set of effector molecules and matrix molecules was identified and incorporated into porous scaffolds. The scaffolds thus prepared may create an 'embryonic-like' environment for cells to recapitulate embryonic events and for new tissues/organs.


Subject(s)
Embryo, Mammalian/cytology , Skin/metabolism , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Blotting, Western , Cattle , Collagen/pharmacology , Collagen Type I/pharmacology , Embryo, Mammalian/drug effects , Gene Expression Regulation, Developmental/drug effects , Hedgehog Proteins/metabolism , Heparin/pharmacology , Hyaluronic Acid/pharmacology , Immunohistochemistry , Insulin-Like Growth Factor II/pharmacology , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL